정말 멋잇는 문제 2
게시글 주소: https://i.orbi.kr/00071149712
6x6판이 2x1의 조각으로 덥혀있다. 이때 항상 이 판을 두 직사각형으로 나눌 수 있음을 증명하여라. (어떤 조각도 두 개의 직사각형에 걸쳐있지 않다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
쌍지나 쌍사를 해서 즐겁게 개념강의를 들으며 행복한 수험생활을 보내고 싶구나..
-
언매올인원 0
25수능 언매 올인원 책이 있어서 그대로 쓰려고하는데 26올인원 강의를 보니...
-
이런건 다 자습주나요?? 고3때 쌤들이 자습 많이 주시나여
-
고대가고싶다 ㅜㅜ 공부열심히해서 고대쟁취
-
재입학하러 가는데 다른데 붙으면 안가려구여..
-
오르비에 나보다 영어 못하는 사람은 없을거라고 확신할 수 있음 5
ㅈ반고 고1내신 영어 5등급 고1모의고사 4등급 고정 6번의 평가원 시험 중 5번...
-
추천이 0.65인데 이거에 맞게하는게 더 정확한가? 난 일단 0.8로 하고있는중인데...
-
과중고 이과 생명 생기부
-
과고준비때문에물화생1과목에올림피아드까지해야한다고요
-
[속보] "김건희 여사 석사 논문은 표절".. 2년만에 결론낸 숙명여대 3
[속보] "김건희 여사 석사 논문은 표절".. 2년만에 결론낸 숙명여대
-
그래야 정신차리고 공부하지
-
국어: 6월까지는 EBS와 기출분석에 집중하고 8~9월부터 실모 개수를 늘림 9월...
-
등원 하원 시간 잡아주는 거랑 핸드폰 관리 같은거만 해주는 곳도 있나요? 통제가...
-
강의 올라오기 전 일주일 동안 해당 지문들 매일 한번씩 천천히 읽으려고 하는데...
-
재작년에 우리학교 전교1등이 한양대 공대 떨어지고 수시 6광탈후 재수해서 학교가...
-
서울 중에서는 성대뿐인가요?
-
유구한 갈드컵 주제 18
빠따 vs 단검 지라리야 vs 이타치 또 머잇을까 재밋는거
-
‘수시로 서울대를 가는 사람이 1명이라도 있는가.’ 매년 1명이상 가면 평반임
-
무엇이 더 짜릿할까
-
아니 컨텐츠 관리자님 15
대체 정모 언제하는거에요 그거만 기달리잖아 나
-
진지하게 늦어도 고2 때부터 내신 다 던지고 정파 전향임뇨 저긴 재능 플러스...
-
물어볼곳이없네
-
[중앙대학교 미디어커뮤니케이션학부] 25학번 새내기를 찾습니다!! 0
[미디어커뮤니케이션학부 25학번 신입생 단톡방 개설 안내] 안녕하세요,...
-
평가원 #~#
-
대학오고 절실히 느끼는건데 그렇게 성실하게 살 수 잇는 인간이 아님
-
여기 ㅈ반고죠 2
졸업학년 서울대 아무도 못가는 경우가 절반 내신 상위권 반에서 고2 모고 3합 12...
-
갈색왜성은 내부의 열에너지를 주로 적외선 형태로 방출한다. 이 문장 지엽인가요 ?
-
네
-
대입은 진짜 어떤 전형으로 어디에 가게 될 지 예측하기 어려운 거 같음 ㅋㅋ
-
어떤 분이 혹시 공사하시는 분이냐고 물어보심... 부끄럽다
-
근데 오르비에서도 14
서울대 수시일반 <<- 이런 누가 봐도 빡센 고트 전형이나 갓반자사 수시는 안 까이는듯요?
-
41/60 등 4
이성적으로 스나 노리는 거 자체가 말이안되긴하지 ㅅㅂ 개같이멸망
-
국영수 상대평가 과탐1,2 범위를 합쳐서 절대평가 사탐도 윤리, 지리, 역사,...
-
연세빵에 입학티켓 넣어주기 고려대학교 돌려돌려돌림판 전형
-
길거리 수학 챌린지 아닙니다 저이거 ㄹㅇ로 못풀겠어요 +++++오르비언형님들 덕분에...
-
한양대 합격생을 위한 노크선배 꿀팁 [한양대25][축제] 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
난 그게 좋은데
-
너네 수시에서 도태된거잖아
-
라이더.
-
21년도에는 생윤 현자의돌 암기딸 하면 1 나왔었는데 2
요즘 생윤 빡세졌다는데 현돌딸로 안됨?
-
진짜 이상한 질문이긴 한데 그런다면 어떡해요 성적으로 좋아하는거랑은 다른데
-
다만사랑하는방법이달랏을뿐이다
-
붙겠죠..???? 사과대 제발제발 최초합 기원하는데
-
라고 할뻔~
-
솔직히 말해서 0
지거국도 그 지역 사람들한텐 공부좀 했던 애들이 가는 지역명문대임
-
네
-
현역들.. 무서워하지 말아라.,
-
구글에 ㅇㅇ대 명문대. 이렇게 쳐보면 됨. Sky 명문대 이렇게 검색하면 그냥...
-
근데 3년 수능쳐서 22
3년 내내 경외 ~ 동홍 라인이면 접는게 맞겠지 벗어날수가 없나 현역때는 잘쳤다고...
알았어
이 문제 레전드야 개 쩌는 퀄리티야 멋진 문제야
참고로 1963년도 문제임뇨
우리 엄마도 없던시절이네
??
난 1000만원을 걸지 반례를 들어봐라
??
항상이라는건
임의로 첫 조각을 아무렇게 놔도
두 큰 직사각형으로 나눌 수 있단거임?
임의로 2x1 조각을 아무렇게나 배치해도 나눌 수 잇단거
두 직사각형이라는게
2×1의 테두리를 따라가는 큰 직사각형인거임?
어떻게 2x1을 배치해도 단층선이 하나 이상 나온다는 것임뇨.
내가 이해한게 맞구만
오카이
힌트
귀류법임?
원래 풀이는 귀류법 맞
오케이
이런류 문제 종종 체스판 가지고 풀던데 이것도 그건가요
체스판 가지고 푸는게 먼지 모루겟어요
https://orbi.kr/00067151715/
요런 느낌임 ㅋㅋ 이 문제는 아닌가보네용
컬러링 문제군요, 이 문제는 컬러링 문제는 아닌드읏요
힌트..
귀류법으로 단층선이 없는 배치가 있다 가정하고,
단층선을 없애려면 도미노가 18개보다 많이 필요해서 모순임을 끌어내면댐뇨
오켕이...
선이 없으려면, 1-2, 2-3, ... 5-6 을 잇는 도미노가 모두 어딘가에 존재해야함.(가로, 세로 모두)
세로로 1-2를 점유하는 도미노가 하나 존재하면, 1번행이 5칸 남고, 가로로 누운 도미노로는 이를 채울 수 없으므로 1-2를 점유하는 도미노는 항상 짝으로 존재함.
이러한 사실을 기반해서 같은 논리를 반복하면, 2번 행에서 3칸을 남겼을 때 1-2행을 추가할 순 없으므로 나머지도 짝으로 존재함. 즉, 세로로 배치된 도미노가 10개 이상 있어야 가로 선을 없앨 수 있음.
또한, 가로세로에 대해 일반성을 잃지 않으므로 가로 세로 각각 10개 이상 있어야 한다는 결론을 얻을 수 있고, 총 칸수가 36이라는 모순에 도달한다.
와 정답 ㅋㅋ 이것도 푸실줄이야
아까 잠깐보고 포기했었는데 다시 좀 삘받았어요 으흐흐
문제가 ㄹㅇ 멋잇음뇨. 63년도 문제고 이게 가지문제 (a)고,
(b)는 8x8일 때도 (a)가 성립하는가? 임뇨
호오.. 러프하게 봤을 땐 필요한 갯수는 일차로 증가하는데 총 칸수는 제곱으로 증가하니까 같은 방식의 증명은 어려울 것 같긴하네요
이사람 신인가
으흐흐
가로세로연구소밖에 몬알아들음