미적 질문 (간단하게 정리했음)
게시글 주소: https://i.orbi.kr/00071251089
g(x)가 아무런 조건도 없는 상황인데
2x+npi 꼴이라 할 수 있나요?
g(0) = npi 가 아닌 상황이면
꼭 g'(0) =2 일 필요는 없는 거 아닌가요??
미적 너무 오랜만이라 헷갈리네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
레어를 계속 사고 뺏기고 사고 뺏기면 덕코가 늘어나나요 1
언젠가 덕코를 탕진해 살수 없는 순간이 오겠죠
-
기상.. 1
패턴 돌리기 성공..
-
통수가 많은과목이라 개념을 머리속에 백지복습하듯이 계속 해야되고 신유형도...
-
이 시간부로 경희대가 오르비를 지배하겠습니다
-
개씹허수인데 미적하는건 진짜에바죠??? 국어영어사탐 다 점수 올려야하는데 걍...
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
부족한 부분을 선생이 직접 캐치하고 케어해주는게 큰가
-
버터 김치 햄 대파 채 썰어서 같이 볶아주다가 김치 살짝 노르스름해지면 밥 넣고...
-
몸무게 6
180cm 면 어느 정도가 적당할까
-
보통 관종끼가 있는분들임??
-
형이야 4
열공해라 수이팅.
-
잇올 독재할건데 일요일은 자율등원이길래 걍 일요일 하루 동기들 만나서 놀고 쉬면...
-
아침메뉴 추천 좀
-
전역 마렵다 4
-
2시애 자 놓고 6시 30분에 일어나는 나. 벼우언에서 시발점 듣는 5듵ㄱ ㅂ학생...
-
대학커뮤니티 노크에서 선발한 성균관대 선배가 오르비에 있는 예비 성균관대학생,...
-
그래도 노력은했다고 생각하심? 아니면 공부 ㅈ도 안한거같음?
-
물리선택= 입시실패 라는것을 알아야할듯
-
수능중독 2
수능 잘봐도 마지막 수능이니까 또 보고 싶을 거 같은데 큰일났네
-
사수를 사수 11
고고
-
본인 물화생1 모고 봐봄 갠적으로 생1>=화1>물1>지1 인듯 이중에서 물1이나...
-
흥미롭뇨
-
스블 수열 0
얼마나 좋길래 다들 수1에서 언급하는걸까 다음주랑 다다음주 너무 기대된다
-
애초에 대치 토박이로 레미안 대치펠리스 이런데 30억짜리 집 사는애들이 많으니까..
-
화2도 잘하려면 13
씻으면 안됨?
-
하 메타그로스 7
팔근육 미쳤다
-
1. 단 자신없는 챔프를 시킨다 2. 못하겠다고 불안하다고 하면 그럼 프로하지말라고...
-
마침 알고리즘에 떴네
-
현재 개념원리로 개념 1회독 후 쎈발점 1회독을 완료한 상태입니다. 뉴분감은 수분감...
-
수학 n제 3
수2 드릴5 3일컷했는데 난이도 적당한거 같아서 다음 n제 뭐 해야하나요? 강기원...
-
얼버기 4
더자고싶어
-
경희,외대 30
경희 국제학과 vs 외대 ld 김범준 인하 경영 점공 연경 서울대 약대 서강 고대 피오르 아주
-
친가댁 도착 2
하자마자 외가댁으로 출발
-
얼버기 20
-
수능 끝나니까 5
연애를 하고 싶다.... 하지만 파격적인 "남중+남고+주변에 다 남고" 빔을 맞아...
-
자 들었으면 출발
-
정석민t 비독원 1
비독원 강의 듣고 체화하는 데 얼마나 걸렸을까요? 지금 책 왔는데 리제부터 2월까지...
-
전과 0
전과 신청은 한 번만 할 수 있나요 ? 아니면 여러 과에 지원할 수 있나요 ?
-
감사합니다
-
가나다 군 전부 중앙대 박은 애들이 많아서.....
-
점공에서 확실히 빠지는 사람 지우고 써봤어요 도와주세요!!
-
난 못났고, 별 볼일 없지 그 애가 나를 부끄러워 한다는게 슬프지만 내가 뭐라고...
-
이렇게 남의 행복을 바란적은 없지만.. 더 좋은 곳으로 가십쇼
-
정말 안좋은 습관인긋 뭔 과목을 가려서 공부한다는 것은 무언가 한 과목에 몰빵한다는...
-
사수해서 대학사수하면 됨
-
기지개피세요!
-
3년내내 문언독 고집했는데 항상 뒤에 독서 두문제는 날렸었거등요 순서바꾸고 문학이...
-
안내 보니까 시기별로 컨탠츠가 쫘라락 나와있던대 그거 수능 보는 전과목 다 사면...
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요
오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임