(증명)언제 미분계수=도함수극한이 성립할까?
게시글 주소: https://i.orbi.kr/00071286908
에 대해서 1년전쯤 학부생수준에서 자필로 규명해놓았던 자료를 공유합니다 ㅇㅇ
(악필인점 양해부탁드립니다 ㅜ)
가장 유의미한 결론은 개구간에서 미분가능, 폐구간에서 연속이고 도함수극한이 존재한다면
미분계수=도함수극한이 성립한다는것이고
두번쨰 유의미한 결론은 미분가능한 함수 f에서 도함수 f'이 불연속일수 있는 경우는 도함수가 진동하는경우 뿐이라는것을 규명하엿습니다. (이는 도함수극한이 존재한다면 항상 도함수가 연속이어야 미분가능하다는 뜻으로, 위의 가장 유의미한 결론이 잘 성립함을 보여줍니다)
수능에 직접적으로 필요한 내용은 아니지만 어찌보면 미분가능성 파트에서 찝찝함없이 문제를 해결할수 있게 해주는 지식들입니다 ㅇㅇ
수능 미적에서 상충되는 경우는 없었으나 혹여나 잘못된 내용이 있다면 지적 환영합니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 현역이라고???? 나 두살 때 노래가 이렇게 좋다니
-
작년이시즌에 봉구스땜에 10키로찌고 지금 잦은 술자리땜에 실시간으로 뿌는중
-
쥬라기공원(공룡도 크게 보면 괴물이니..) 에이리언 기생수 도쿄구울 등등
-
본인 여사친 존예에 씹인싸에 공부잘하는 명문자사고생인디 신남연 팬임 ㅇㅇ 신은 공평함
-
오늘 친구랑 손절했어요 11
이제 남은 친구는 한 명 이 친구마저 사라지면 전 진짜 혼자가 되겠네요
-
어떡해 올림??
-
양성애자? 보추? 여장갤 호감고닉? 수술못받은트젠?
-
윤서인 마인드 4
배울점 참 많은듯
-
704 중반대 연경 최초합은 많이 힘들겠죠? 설에 좋은 소식 가져가고 싶은데..
-
비씹덕 밴 8
나다 싶으면 죽어
-
공스타가 나의 성적향상에 도움이 되지 않을까.
-
최초합인데 아버지가 전전 빼고는 미래가 전부 불투명하다 하셔서 그냥 중대 장학금 받고 다니라는데
-
호라모젠젠 7
헤키다시
오