이건어떰
게시글 주소: https://i.orbi.kr/00071315503
모순<->(A and not A)<->거짓
모순<->거짓
무모순<->참
---------------------------------
공리는 참이라는 증명이 없다
따라서 귀류법 증명도 없다
따라서 공리를 부정하면 "무모순"이다
---------------------------------
위 둘 을 연결하면,
"공리를 부정하면 참이다"
_______________________
전제가 참이면 결론이 참이다
대우명제
결론이 거짓이면 전제가 거짓
공리는 전제에 속한다
공리를 부정하면 무모순 은
공리가 거짓이면 무모순 이다
즉
결론이 거짓이면 전제가 거짓이고 전제가 거짓이면
공리가 거짓이고 공리가 거짓이면 무모순이다
줄여서
결론을 부정하면 참이다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저는 국어하고 지구과학입니다
-
궁금하네요
-
무물보 28
날마다 오는 기회입니다
-
이미지 메타 탑승 25
ㄱㄱ혓.
-
질문 받아요 20
아무도 질문 안해주면 슬퍼요
-
기하에 벽 느낀 문제 24
-
이불 밖으로 손 잠깐 꺼냈다고 이렇게 추울 수가 있나...
-
저는 4월에 있는 세무사 1차를 치래요 한달에 한 과목씩 끝내야 할 판인데 ㅅㅂ
-
인간 vs ,사람 14
뭘 더 좋아하시나여
-
다시 전과 알아보고 하니까 마음이 편해지네 동아리도 하고 축제도 가고 친구도 많이 사귈거임
-
학벌좋고 외모좋고 성격좋은 사람들 꽤 있음 ㅇㅇ..
-
근데 내 주변엔 밥값 2만원 넘어가면 그 돈이면 실모가 몇개냐고 할 새끼들밖에...
-
사과하고 싶다 12
doing apple
-
히잉
-
재밋는 미연시 게임 중 13
두근두근 문예부
-
그냥 국숭세단까지면 ok 너무 학벌을 많이 보고 싶지도 않기도하고....
-
이미지를 써주세요 14
대체 이 주장을 끊임없이 반복하는 목적이 무엇인가요.. 정말 순수하게 궁금해서 여쭙습니다
진정한 자유의 논리적 기반확보
공리를 부정하면 그 공리 안에서는 무모순이 아니라고요오오
공리를 부정하면 공리가 거짓이 되는데요
공리가 거짓이 되는게 아니라
공리를 부정하는 명제가 거짓이 되는거예요
A를 부정하면 A가 참이 아니라는말 아닌가요
이렇게 생각하셈
공리계 안에서 공리는 무조건 참임.
공리에 태클걸면 태클건 명제가 거짓임.