[수학칼럼] 부정적분에서의 극값
게시글 주소: https://i.orbi.kr/00071715995
안녕하세요 저능부엉이입니다
오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다
오늘 다뤄볼 주제는 부정적분에서의 극값입니다
부정적분에서 극값이라는 워딩이 나온다면
여러분이 해야할 행위는 99.99% 미분입니다
그럴때 우리는 다음과 같이 행동해야 합니다
1. 미분하기 (미분할 수 없다면 미분할 수 있게 만들자)
2. 극소,극대,극값은 도함수의 부호변화 유심히 관찰
예시 문항을 통해 설명하자면
230620 입니다
먼저 극값에 관한 워딩이 나온다면 공통영역에서는
필연적으로 미분을 할 수 밖에 없다는 것을 명심하세요
하지만 미적 선택자가 아니면 이대로 미분하기가
어려워 보입니다. 그렇다면 미분가능하게 만듭시다
미분이 이렇게 됐습니다
그렇면"g'(x) 의 부호가 1과 4에서 음에서 양으로 바뀐다"
이사실을 사용해야 겠습니다(극솟값이기 때문에)
|f(x+1)|-|f(x)|라는 함수를 그리기는 힘드니
|f(x)|에서 x좌표가 1차이나며 함수값이 같아지는 순간을
생각해봅시다
근데 지점이 총 3군대 나오는군요
하지만 우리에게 중요한것은 극솟값입니다
부호가 -에서 +으로 가는 순간이죠
따라서 |f(x+1)|가 |f(x)|보다 커지는 순간입니다
그렇기에 그림과 같이 x=1과 x=4인점을 찾을 수 있습니다
이후 대칭축이 3이고 f(1)=-f(2)인것을 이용해
계산을 끝내면 바로 답이 나옵니다
231112입니다
먼저 x=2에서 최솟값 0을 지닙답니다
따라서 2에서 극솟값이겠고 미분할 수 밖에 없습니다
우리는 그렇기에 두 가지 식을 얻을 수 있습니다
먼저 1번을 사용해 문제에서 주어진대로 그림을 그리면
이런식으로 나옵니다
(극솟값이기에 부호변화가 2에서 음-양으로 바뀌는게
포인트입니다)
이후 2번식을 사용하면
이런식으로 마무리되고 1/2에서 4까지 적분이기에
간단하게 정답 -1/2가 나옵니다
220620입니다
극값이라는 워딩이 나왔습니다
일단 미분해봅시다
다음과 같이 미분되었습니다
우리는 g'(x)의 부호변화가 단 한번 일어나도록
a값을 만들어야 합니다
일단 f(t)^4은 항상 0이상이기에 2번함수는
오직 a에서만 부호변화가 일어납니다
따라서 적분한 함수와 앞의 1번함수가 공통된 근을 가져서
그 근에서 x축과 접하도록 만들어야 할 것입니다
2번함수가 근을 갖는 지점은 x=a에서만
따라서 가능한 a값은 3,5 뿐입니다
오늘 칼럼의 핵심을 요약하자면
부정적분에서 극값내용이 나올경우 무조건 미분
극값은 도함수의 부호변화가 핵심
이 되겠습니다
사실 어느정도 수학을 하는 사람에게는 매우 쉬운 내용이기도 그럼에도 의외로 극값에서 도함수의 부호변화를 바로 연결 짓지 못하는 사람이 존재하다고 생각해서
행동강령적인 느낌으로 칼럼을 적어 봤습니다
들어주셔서 감사하고 좋아요는 제게 큰힘이 됩니다
다음에도 좋은 칼럼으로 돌아오겠습니다
[수학칼럼] 등차수열 정복하기 -
[수학칼럼] 정보의 용도 파악 -
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
https://politiscales-kr.github.io/quiz/ 상당히 비슷한 듯?
-
자하지 0
?
-
약간 김현우 스탠다드 쉬운 버전 느낌임
-
뭔 얘는 언매 OT듣고 싶은데 문학이랑 독서 얘기를 하지 않나 OT에서 뭘 언제...
-
경희대 5명 뽑는 과에서 예비2번&경희대 4명 뽑는과에서 예비1번인데 추합 될까?
-
ㄹㅇ 구성이 거의 완벽한 듯. 구성에 고민 많이 하신거 가틈
-
반갑다 찐따들아 14
난 너희들의 대장이다
-
나 어제 7
김범준샘 카이스 아나토미 맛보기 보고왓는데 김범준샘 말투나 분위기 목소리 이런게...
-
얼버기 8
-
시대인재 교재비 1
강사 교재비는 월 학원비에 포함인가요 따로 내야하나요?
-
두비두바 바 두비두바 함께 못 가서 정말 미안해요
-
합격증 3개 10
현역인데 그냥 한번 올려보고 싶어서
-
경한 인문도 보면 그 많던 588 587 표본들이 안 보이네요 근데 올해 과연...
-
시대 재종 인문 0
확통사탐반은 한개인가요? 대치시대요!
-
대학교 합격하고 오르비에서 놀 줄 알았는데 다 과외준비 / 칼럼작성하네 ㄷㄷ..
-
궁금한게 많은데 재학생 계신가요오...
-
점심 ㅇㅈ 5
라볶이 만들어 먹음
-
저녁에 다시 올께..
-
뉴런 이전 수분감 하긴 했는데 수분감이 좀 컴팩트한 감이 있어서 한완기 하고 n제할까 고민중입니다
-
거기 여자10번이 자기는 키큰남자가 오히려 싫고 자기보다 키 작아도 좋으며...
-
실제 지원 대학 리스트에서 합불 표시나 예비 몇번 받았는지 등록 안 한사람들은 보통...
-
얼부우기 3
안뇽
-
미적 만년3뜨다 확통으로 넘어갔는데 생각보다 1-2표본이 없는 것 같ㅇ아서요. 그게...
-
치과왔다 3
교정은언제끝나는걸까
-
ㅇㅇ
-
집에서 동생만 좀 작았는데 병원가서 검사했더니 지금부터 최대한 커도 177이래...
-
저 왔어요⭐️ 8
-
4수는 부러워서 안됨
-
떡꾹 끓일 때 1
물 끓이고 떡을 넣나 떡 넣고 물을 끓이나
-
살기싫다 0
뭘 해야하냐 진짜
-
이게 사투리였구나 근데 나 전라도 살아본적도 없는데ㅋㅋ 이게 전라도 말이구나 근데 워낙 유명해서
-
제발출근하게해다오
-
485일 10
남은 수감일
-
서울대 지역균형 정시 합격이면 고등학교에 연락해야 하나요? 2
따로 학교장 추천 적어준 학교에 알려야한다거나 상호작용해야하는게 있을까요?
-
심찬우 문학 3
문학 책 아직 안왔나요 ?? 생각하며 읽기여
-
itm학과 교수님 연구실에 있는 학부연구생 아웃풋입니다~ 해외 대학원 박사로도 자주...
-
방학동안 알파테크닉 수1,2 2회독 생각의 질서 미적분 알파테크닉 미적분 2회독...
-
펑크가 아니라 의반들 시험만 보고 빠져서 다같이 점수만 낮아진거로ㅋㅋㅋ
-
어캄? 원래 이 난이도였나 하 70점 못넘길거같은데
-
2월달엔 독서 할게 없는데 뭘 하면 좋을까요
-
메디컬에 인서울상위권 대학이 널렷는데 어느 대학이든 대학합격글 올라오면 다들 진심으로 축하해주는듯
-
현역 사설 응시 7
현역 고3입니다. 현역이 현장에서 응시할 수 있는 사설 모의고사는 없을까요?...
-
남자 공대 여자 예체능 이런거면 사귀기 빡셈?
-
보통 한의대 노리고 가는걸까요?
-
사실이 믿기지가 않음 고뽕 치사량인데 이거 언제쯤 없어짐.. 지금 한시간마다 합격증...
-
대학영어 2
제 과의 커리큘럼을 보니까 대학영어가 필수인데 많이 어려운가요 ..? 수능 영어...
-
알고리즘으로 윤도영 영상 떴는데 갑자기 궁금하네 찾아봐도 안 나오기도 하고
-
새기분 독서 고민 중 인데요 강기분 독서는 개학 전 완강 예정입니다 독서도...
-
과탐 선택 질문 1
물리를 하면 무조건 망하나요??
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
![](https://s3.orbi.kr/data/emoticons/orcon/024.png)
선개추 후감상왜 재업함?
중간에 인수분해 하나 잘못한거 있었음...
그래서 수정후 재업함
부정적분보단 긍정미분이죠
와 이사람 오랜만이네
지금쯤 뭐하고있을까
담달에 전역하심
![](https://s3.orbi.kr/data/emoticons/oribi_animated/015.gif)
정적분 정의 함수는 미분하고 대입한다흔히들 가르치지만 정말 중요한 태도
칼럼 잘 읽고 있어요
뻘글쓰는건 역시 다른 사람인거죠? ㅋㅋ
![](https://s3.orbi.kr/data/emoticons/oribi_animated/005.gif)
잘보고갑니다~![](https://s3.orbi.kr/data/emoticons/almeng/024.png)
미적분 내용 못 써서 0으로 바꾸어서 쓰는 거그래프간 부등호 대소 판별 유익 추 goat
![](https://s3.orbi.kr/data/emoticons/oribi_animated/014.gif)
goat이거 삭제 ㄴㄴ
첫?번째문제 아예 부정적분을 F(x)라 두고 미분해도 됩니당
근데 누가 봐도 고능부엉이신데 닉넴 좀 바꾸세요 ㅠㅠ
231112 에서 극솟값을 2에서 가지는 게 아니고 0에서 가지나요?
앗...오타
![](https://s3.orbi.kr/data/emoticons/oribi_animated/014.gif)
칼럼 너무 잘 봤습니다!!231112번을 저렇게 걍 풀어도 되는군요 ㄷㄷ
누구세요???!
세로드립임?
삼각방정식도 다뤄주시면 감사하겠습니다
담에 한번 노력해볼께요
이게 내가 아는 부엉이지