[짧칼럼]절댓값에 관한 소고
게시글 주소: https://i.orbi.kr/00071914369
안녕하세요 새벽입니다.
앞으로는 칼럼 더 열심히 써볼게요 ㅜㅜ.
요새 너무 바빠서 잘 못쓰게 되는 것 같아요.
무튼 본론 들어가봅시다.
0) 절댓값은 강력한 조건.
절댓값 함수 때문인지 아무래도 절댓값이 나오면 좀 귀찮아하시는 분들이 많은 것 같아요.
|f(x)|=t 에서 f(x)를 접어올릴건지, f(x)=+-t로 풀건지....
심지어 둘 다 그리 간단한 풀이과정을 가지고 있지는 않구요.
사실 뭐가 더 간단한지는 문제마다 다르고, 그 점을 판단하는 것은
본인의 경험이 쌓이면서 저절로 해결되는 것이기에 오늘 할 부분은 이 부분이 아닙니다.
오늘 할 부분은 너무 당연한데도 많은 사람들이 놓치는 성질인
"절댓값은 무조건 양수"라는 성질을 이야기해보려고 해요.
너무 당연한거 아니야? 라고 말할 수도 있을 것 같은데요.
의외로 어려운 문제들에서 간단하지만 강력하게 쓰이게 됩니다.
그리고 사실 절댓값과 유사한 기능을 하는 녀석도 있는데,
바로 짝수제곱근이죠. 짝수제곱근 또한 절댓값처럼 가질 수 있는 부호를 0 아니면 양수로
만들어 버린다는 점에서 한번은 짚고 넘어갈 필요가 있습니다.
일단, 예제부터 봅시다.
1) 예제
빨리 노트에 푸시고 아래에 제가 쓴 사고 흐름이랑 맞춰보시면 좋을 것 같습니다.
제가 하고자 하는 말은 여기서 (가) 조건에서 바로 정보가 보여야 한다는 것입니다.
(2a_5-1/2a_3)^2=0이고, 제곱은 0 또는 양수만 가지므로,
제곱 안의 식이 0 따라서 공비가 +-1/2이라는 것을 알 수 있습니다.
아래 조건에서 바로 공비가 -1/2라는 사실을 알 수 있고,
동시에 초항이 양수이므로, (나) 조건을 계산하면, 초항이 9라는 사실까지 알아낼 수 있습니다.
따라서 S_6은 189/32입니다. (문제를 급하게 만들어서 값이 더럽네요 ㅜㅜ)
그럼 이제 아래 실전문제를 봐주세요.
2) 실전문제
이것도 노트에 푸시고 오세욥 ㅎㅎ
3) 해설
자 일단 (가) 조건을 볼까요.
이미 (언제 기출인지는 생각이 안나는데) 제 기억이 맞다면 |a|+|b|=0을 만족시키려면,
a=b=0이라는 발상은 나왔었죠. 거기에서 아주 살짝만 업그레이드 된 버젼이이에요.
| |은 0 또는 양수이니 좌변은 0이상인 값을 가지는 데, 마찬가지 이유로 (-| |이니깐)
우변은 0이하인 값을 가지죠.
이를 통해 f(k)=f(k-1)=f(-k)=0이라는 점을 알 수 있습니다.
그다음은 쉽죠.
(나) 조건에서 f(-1/k)=0인데, 부호상 -1/k = k-1 or -k이고 판별식 써보시면,
k^2 -k +1은 실근을 가지지 않으므로, k=1임을 알 수 있고,
극한값 계산해주시면, 최고차항의 계수 3/2 나오면서, f(4)=90이 됩니다.
이 개념과 추후 칼럼에서 다룰 여러가지 개념들이 복합된 미적문제도 나중엔 소개할 예정입니다!!
일단 오늘은 여기까지구요 보잘 것 없는 칼럼 읽어주셔서 감사합니다!!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
등록금 6
고지서에 자퇴하면 장학 뱉어내라네... 당연하겠지만 살짝 아쉽네
-
시대강사가 그랬음...
-
고쳐야 될 게 한두개가 아니라서
-
중대 경영은 예비 500번대라 될 거 같고 경희대는 최초합임다 여러분이라면 어디 가실 것 같나요?
-
얼버취 2
ㅇㅇ
-
점순이 만화 4
난 감자 싫어해
-
표정 썩어있는 시대 부엉이들 사이에 작고 동그란 사람이 ^~^ 이러고 끼어들어와서 앨베 타심
-
대충 클로바한테 녹음시키고 어쩌구저쩌구 노트북 딱 펼쳐놓고 태블릿으로 필기하고...
-
주식 한번 물려보면 됨 세계 모든 경제상황을 알 수 있게 돼요 ㄹㅇ
-
이 분들 동의하시면 바로 룰렛 굴림
-
올해 인문지문 첫번째부터 쉽지 않더라 ㅋㅋ
-
인강 빼고 아무것도 안되나
-
ㅂㄱㄸㅂㄱㅇㅈ 7
10초삭함(펑)
-
강평 ㅇㅈ 5
역시 국어는 대민철
-
가보자 가보자
-
야식ㅇㅈ 2
밥도 말아먹을 예정
-
시대는 교재비가 양아치인거긴 한데 그래도 1500명 다 못받을까봐 이러는건가
-
이번 수능 ptsd 옴 시간 ㅈㄴ 부족하고 개어려웠는데 또 그럴까봐
-
어케저런일이 ㅠㅠ
-
남고다닌다고 써놨잖아
절댓값이 은근히 강력한 재료임
![](https://s3.orbi.kr/data/emoticons/dangi/035.png)
맞아용