아까 올린 자작문제 풀이과정인데 어디서 잘못된거죠..
게시글 주소: https://i.orbi.kr/0008192894
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
혹시 이중인격 있으시면 병원 가보세요 진지하게요 애니프사는 집에 쳐박혀있는...
-
너네가 알아야할거나 궁금한건 댓글로 답할게 일단 조건만 전부 나열해봄 1. 걍...
-
내가 본 애니에서는 이렇던데,,,,,,,,
-
메디컬,계약학과는 안되는 성적이고 고려대 중간 공대?~상위공대(운좋으면) 쓸 수...
-
등급컷보니까 23수능이랑 비슷한거같긴한데 23수능땐 화작 문학 다 더럽게 쉽고...
-
연세대 논술 261명 증원이면 그 인원은 어디에서 빼오는 건가요? 2
연논 상황에서 소송을 안 당하고 마무리 지으려고 교육부와 협의해서 나름 묘책을 짜...
-
소아과 지원율 1
이대목동신생아실 사건은 2018년에 발생한 일이다.
-
작년에 와주지 ㅠㅠ
-
늘려~
-
정시 정상화 연대의 정상화 버닝이벤트
-
보통 그러지 않나
-
블라당했나? 0
갑자기 사라졌네
-
등급컷은 12/5일에 알 수 있는 건가요?? 탐구만 해당되는 얘긴가요?? 아니면...
-
연세대 버닝이벤트 ㄷㄷ
-
생각은 할수 있어도 교육업계 종사자가 저렇게 편향된 발언을 하는건 문제 있다고 봄
-
기차탑승완료 6
이제2시간만있으면 대구도착
-
이거 정시에서 떼오는 거 아니죠?
-
진짜 문레기라고 무시함?
-
자본주의는 너무 유기적으로 연결되어 있어서 내가 필요로 의해 산 제품이 착취 당하고...
-
연세대, 다음달 8일 수시 논술 ‘추가 시험’ 치른다 18
2025학년도 수시 논술 전형(자연계열) 시험 문제 유출 논란을 겪은 연세대가...
-
1스택 적립완료 13
앞으로 몇년이 남았을까나
-
1차시험응시자도 응시가능 261명 추가선발
-
시간 개아까움...
-
웹툰 추천좀 9
나심시매
-
성적 변화도 같이 적어야징
-
사건 요약 신생아실 붙어있던 4명 동시에 사망 세균성 패혈증으로 추정됨 (아마도)...
-
그렇구나..
-
술마셔서 멍청해진 머리 13
스도쿠로 정상화시키는 중
-
대박이네요
-
커뮤니티 특 3
분탕치러 들어온 유입이랑 준고닉이 영혼의 키배를 뜨고 있는데 50%는 관심없음
-
음료수 마실 때 7
빨대로 보글보글하면 너무 애샛기임?
-
나 솔크 아니긔 4
릴스가점지해줫긔
-
ㅈㄱㄴ
-
클스마스에 부산가는데 눈오면 좋겟다
-
크앙 공룡이다 2
크아앙
-
인증이 너무 오래걸리는걸보니 여초커뮤에서 스샷지원받는중인가보네요 느그들본진으로 돌아가주세요^^
-
안녕하십니까. 올해 10월 12일 시행된 2025학년도 자연계열 논술시험과 관련하여...
-
24일까지 밤샜다가 25일 새벽될 때 즈음에 수면제 먹고 퍼 잔다음 26일 자정에 일어날 것임
-
충북대 - 주차장에 컨테이너박스 놓고 수업 단국대 - 간호대 건물에서 수업...
-
고2때 써도 고3때도 가능함요?? 일부러 아껴두고 있었는데
-
레디컬 성향은 많지 않아도 어차피 페미 자체가 여자한테 이득이면 이득이지 피해주는...
-
배재대 수준 0
동아대 조선대가 지거사(거점 사립대)라는데 왜 배재대는 아니니?
-
눈 적당히 오랬더니 걍 눈을 투하하고 있네 하..
-
아 폭설인데 7
이정도면 가다가 눈사람되겠네
-
평평이들 1
음모론을 광신적으로 믿는 이유를 자신의 정체성의 일부가 되버렸기 때문이라 그렇다고...
-
인생 개좆같네 진짜 시발ㅋㅋ
-
학교 학과까고 6
키배뜨면 안쫄리나 동기나 선배가 알아보면 어떡함
-
01년생 ㄷㄷㄷ 존잘+ 의대생 +기피급 생1 저자
-
그래서 원래 걔가 올라오기로 했는데 걍 내가 가기로 함 성심당 가는김에 친구도 보고 일석이조
펭균값정리는 '어떤' 점에서 f'(x)가 1이 되는거고 저 문제에서는 0<x<2인 '모든' 점에서 f'(x)가 1이 돼야되는데 저 도함수가 이 조건을 만족을 못시켜줘여
퓰이가 아니고 문제 자체에 모순이...
그렇군요 답변 감사합니다
아 그럼 (가)식이 (0,2)에서 모든 x가 f'(x)=1이되는건데
어떤 f'(x)=1을 만족하려면 '(0,1) (2,3) 을 지난다' 같은 정점이 필요한건가요?
아녀아녀 (가) 식에서 0~2사이 평균변화율이 1인데 (나)조건에서 모든 점에서의 미분계수가 1보다 크다고 주어졌으니 0~2사이의 모든 점은 미분계수가 전부 1이 되야하는것...
아아..나가 잘못됬구나 이제 알겟어요
덕분에 많이 배워갑니다
제가 이 문제 풀고 아이디어가 떠올라서 그런데 (가) (나) 조건을 갖다 써도 될까요?
네
ㅎㅎ 포만한엔 올려놓긴 했는데 오르비엔 폰으로 파일 첨부가 안 되네요 ㅠ 담에 올려여겠어요 조건 정말 좋았어요 ㅋㅋㅋ
저도 문제 고치고 수정해서 올렸어요 너무 쉬워진거같긴한데 ㅋㅋ
오류투성인데 칭찬ㄱㅅ요 하 근데 오늘도 이것때매 공부못함 ㅜㅜ
수학은 이미 뛰어나신것 같네용..ㅋㅋㅎ 문제 수정된거 f'의 최고차항 계수가 4로 수정 되어야할것 같아요~
그리고 이 문제도 오류 있는것 같은데요.. 최댓값이 아니라 값이 딱 떨어지는데 제가 착각했는지 흠..
ab가 -2t(t+2) 이고 -2 <t<0라 최댓값 2.. 이런데
그냥 시간날때 아까전처럼 고쳐야겟네여 이러니까 도함수 안그려도 풀려서 ㅋㅋ
f(x)-f(2)=(x-2)^3(x-t) (단 t<0) 여기서 f(0)과 f(-2)가 같다는거 이용하면 나오지 않나요?
맞네요.. t가 음수로 나오네여 그냥..