미적분1 자작문제
게시글 주소: https://i.orbi.kr/0008207957
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지구과학에서 사탐으로 넘어가려는데 한지 할까 다른거 할까 고민되네요..
-
CC인데 꼭! 설치or설의가 가고싶어서 화2지2 골랐는데 원과목 할때 물1지1...
-
왜 처음에 물체가 붙어있으면 힘을 줘도 계속 붙은 채로 이동할까요?? 0
그냥 물리하다가 갑자기 궁금해져서요.. 정지해있는 두 물체에 마찰력이 없을때...
-
조정식쌤의 구문강좌랑 김지영쌤의 글읽는 강좌를 수강하고싶은데 섞어도 충돌 없겠죠?
-
와 개쩔었음 지방에 있는 학원이랑 ㄹㅇ 다르다…
-
"수상교통 시대 열렸다" 오세훈 울먹…베일벗은 '한강버스' 보니 3
서울시가 새로운 수상교통 수단인 '한강버스'를 25일 처음 공개했다. 시는 25일...
-
시대 단과 5
예비 고3이고, 겨울 방학 2달 동안 단과 들으려 합니다. 김현우 (미적),...
-
현역이
-
고1 9모 기준 22114 (국영수통과통사) 국어 김승리 aok~ 언매 유대종 수학...
-
이선균에 3억 뜯은 여실장 울먹…"오빠 너무 좋아했다" 최후진술 1
검찰이 배우 고(故) 이선균씨를 협박해 3억원을 뜯은 혐의로 재판에 넘겨진 유흥업소...
-
개때잡으로 개념 끝냈으면 시발점 안해도 되나요?
-
이런 상황에선 무조건 전하량 작은 이온부터 산화되고 그 이온 산화가 종결돼야지 다음...
-
헤헤 건반 샀다 4
켜보진 않았는데 상태는 좋아보이네
-
얼른 한국 뜨고 싶음 16
-
피고네... 6
우우 우....
-
믿을만 할까요.. ㅠㅠ https://m.cafe.naver.com/suhui/28461922
-
은 지랄이고 한 달 뒤에는 ㄹㅇ 개꿀 빨 수도?
-
달러대신 테더(usdt)라는 것도 고려해보셈 얘는 코인시장에서 1달러랑 1:1가치를...
-
모기때려잡기 5
11월까지 있는 모기는 진짜 못됐다...너무 오래해먹는다
-
“요즘 한국인들 보면 모든 걸 비교하느라고... 국평 신축 아파트가 아니면 다들 못...
-
25수능 영어 79로 3이고 이번에 이명학 커리 첨 타보는데 일리부터 하는게 좋음?...
-
심찬우 선생님 생글생감 독서랑 문학 둘다 노베 가 들어도 되나요?? 문학은 개념어는...
-
스트레스 이빠이
-
나,다 군에 안정으로 쓰고 가군 지를건데 고대가 다 2-3칸이라 이거 하나보고...
-
언젠가 탈출해야지
-
"오, 낙지여. 내가 도대체 뭘 잘못한 거죠? 국어 94점, 수학 88점, 영어...
-
님들은 영어 지문 읽을때 영어 그대로 받아들이시나요? 4
아님 한국어로 해석하고 나서 이해하나여? 뭐가 더 좋은 방법일런지요..
-
예전에는 금 모으기 운동 이런 게 극복에 도움이 됐다지만 요즘엔 누가 미쳤다고...
-
친구가 없음뇨 6
키 6cm랑 누가 친구 해주겠뇨..
-
닉변완. 11
-
실외 봄 짱세먼지 여름 더움, 비옴 가을 짱세먼지 겨울 추움 실내에서 러닝머신으로...
-
기분이 좀 묘하네
-
근데 님 취향은 제가 아니겠죠. 갑자기 우울해졌어요. 좋은 하루 보내세요.....
-
이틀뒤면 8
믿고 있습니다 12월에 타워레코드 달려갈게요
-
수학 과외 방식 4
제가 학생이고 숙제로 기출 풀어오기 -> 이해 안가는것 질문 -> 풀이 해설 이렇게...
-
교수님이 내가 좋다뇨..
-
피오르 크럭스가 뭔 차이인지도 모르겠고 가격도 똑같고 다른 데보단 저 둘이 낫겠지만...
-
최고차항도 없이 단 두줄로 끝 ㅋㄱㅋㄱㄱㅋㄱㅋ +오르비에 수정기능 있는거 처음 암..
-
올해 수능 백분위 언매 99~100 확통 76 영어 3 생윤 95~96 사문 91...
-
이러다 미국도 망하면 어카냐
-
메가패스나 대성패스 환급 받기 전에 또 패스 구매하면 환급 못 받나요?
-
국어수학은 어려울 땨 잘보면 표점으로 이득주잖아요 탐구 어려울 때 잘보면 국어...
-
논술 납치질문 3
만약 대학A에 합격했는데 수능성적이 높아서 대학A 안갈려고 취소하면 취소가 되나요?
-
신한투자증권에서 증권사 각 직무를 잘 설명해놓은게 있어서 한번씩 보면 도움될듯?...
-
진학사에서 지금 연대물리가 3칸인데 기공은 4칸 나오는게 말이 되나요? 고속에서는...
-
건대 갈수있나요?
-
김종익쌤 벌써 26 개념 강의 올리심… 어떤 분이 더 좋을까요?
-
https://orbi.kr/00070137789 다들 잘 봤네요... 표본이...
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..