미적분1 자작문제
게시글 주소: https://i.orbi.kr/0008207957
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
새벽이라 그런지 뒤지게 춥네
-
아이오 못토 조카이 나테 이타이타이노 돈케테 손자이칸지 보쿠보쿠 나가루루루 아이...
-
올해 국어 한거 정석민 문개정, 문상추, 문기정, 비독원, 비원실, 비실독 김승리...
-
잭팟 전형으로 서성한 ㅆ가능?
-
ㅇㅈㅎㅈㅅㅇ 5
-
진학사 기준 402인데 (과탐)가능한 곳이 있을까요?? 내신은 bb 예상합니다.
-
폐 썩어서 빨리 죽어도 상관없는데 걍 성인 되면 피워볼까
-
※ 이 글의 내용은 미천한 일개 작성자의 "느낀 점"에 불과하며 기억 왜곡, 또는...
-
전략적 취침 5
수면매매법시행
-
소레데모 키미모아이스요
-
시대인재 0
대치 단과는 언제 뜨나요?
-
머선일~~~~ 원래는 찌릿해서 얼마 못갔는데
-
호우 0
환전지연없이 안전한사이트입니다 각종이벤트도 진행중이니 즐겨보세요 호우평생주소.,com
-
사탐 하면서 메디컬을 노린다고?? 배아파 쥭겠음 ㅋㅋ
-
오르비언 성적이 잘 뜨길 기도함
-
음슴체로 쓰겠습니다 현역때 최저가 3합 13이라 국수영탐탐순으로 49443받고...
-
아 졸려 죽겠다 3
ㅇㅈ메타고 나발이고 잘까
-
책읽어요 2
재밌을거가타요
-
성적표가 문제임 18
진짜 잠이 안 옴.
-
날이 추워지는데 주변을 녹이는 그런 따뜻함
-
호우 0
환전지연없이 안전한사이트입니다 각종이벤트도 잔행중이니 한번 즐겨보세요 호우평생주소.com
-
지듣노 0
생각보다 들을만한 배드 애플 커버
-
여자되기 4일차 4
야추짜르기
-
하...이런글쓰면안되는데 못참겠네
-
커뮤할 때는 이렇게 마음이 편?할 수가 없는데 막상 인스타 들어가면 과거에...
-
질문 받는다 13
진짜 가끔씩 찾아오는 기회임
-
건동홍 안되면 20
그냥 부산대 갈까 건동홍 아래는 부대 버리고 위로 올라갈 만큼 좋은 게 없을 것 같은데
-
지잡대 연세대 ㅋㅋ 13
하다하다 롤하면서 연세대 철학과가 지잡이라는 소리를 다 듣네 ㄷㄷ.. 메디컬 아님 서울댄가 ..ㅋㅋ
-
진짜 조때따 2
인생리셋
-
신촌 자취방 1000/60이면 괜찮은 곳 구할 수 있나요?? 1
저정도 금액이면 그래도 괜찮은 곳 구할 수 있나요? 직방 이런 건 허위매물이 너무...
-
펜 같은 걸 입에 막 물게 된다는 거지
-
화공 과제하다가 6
하루가 끝났어… 공정은 하는게ㅜ아니야
-
왜 이러지
-
은근 실용적일건데
-
화2 1일차 0
오늘 1딘원 끝냈지만 내신때 해논 기억으로 어거지 이해 성공 낼 목표 : 2,3단원...
-
통통이에서 올해 미적으로 처음 갈아타고 25수능에서 4 맞은 미적런데요 한번 더...
-
고민 맛집. 함께 고민해드려요.
-
수능 난이도 반영해서 자체적으로 예상한 컷인가요? 믿을만한가 싶어서
-
잠들기에 성공할 수 있을 것인지 그리고 5시에 일어날 수 있으ㄹ지..
-
1위먹은이유가있었군.
-
있나요 여기?
-
ㅈㄱㄴ
-
과기대 문과.. 4
과기대 문과는 고속이든 텔그든 낙지든 넉넉하게 잡히던데, 과기대 문과 인식이 어떤지...
-
그거슨 참혹함뇨..
-
5시 기상예정 0
사유는 오늘부터 기말인데 공부를 안 했기 때문!
-
과잠너무이쁜데...
-
군용시계 5
-
남녀 상관없이 고백을 받는구나......
-
기하 재밌네 3
머릿속으로 상상하니까 재밌다이 위치벡터 빙글빙글 히히 벡터 발사 ’삼수‘선정리
-
상상도 오프 있나요? 이감은 진짜 올해 도움 많이 받았는데 3
상상 추천?
21?
15?
둘다 아녜요..
ㅠㅠ
히익? 3차함수 아녜여?
맞아용
(0,0)에서 만나면서 y= -x랑 접하는거 아니에요?
(라) 조건을 보시면 (0, 0)을 지날 수 없어요..
라 조건이 x가 0보다 같거나 작을때 x값이 커질수록 (0,0)과 이은 기울기가 커진다 아니에요?
제가 알기론 이게 아마 기출에 있었던 것으로 기억을 하는데 (라) 조건은 조금 조작이 필요해요.. 그리고 (0, 0)을 지날 수가 없어용 x2=0 x1=-2 이런것만 대입해봐두요
라 조건에서 x2랑 x1으로 나누면 g(x2)/x2 > g(x1)/x1 아니에요?
네 맞아요 전 그걸 증가함수로 해석하길 바랬던건뎅.. 기울기로 봐도 무방하긴 하겠군요 지금 보니.. 그렇다고 (0, 0)을 지날거란 보장은 없지만용
증가 함수라구여? 감소함수도 되는데요? 오히려 증가함수가 안되는거같은데
g(x)/x가 (x<0)에서 증가함수인걸용..
아 통채로 말씀하신거구나 전 당연히 g(x)만 이야기하시는줄 알았죠
죄송합니다 제가 설명이 모잘랐네요 ㅠㅠ
제가 수학을 못해서 자세힌 모르지만 x2=0 일때랑 x2=/=0 일때랑 자료해석을 다르게 해야하는거같은데 맞아요?
그래야 0,0 못지나가는거랑 감소함수인게 같이 나오는거같은데
x2=/=0이 무슨 의미인질 모르겠네요 ㅠㅠ..
그럼 답 75에요?
X2가 0이 아닐때랑 0일때랑 (라) 조건해석을 다르게 해야하지않나요? 라는 말이에요
그렇게 하고난다음에 마지막에 g(-1)=0 조건이랑 계수 음의 정수 조건으로 부정방정식 비슷하게 풀었는데 맞아요? (0,양수)지나면 (라)조건 위배되서 (0,음수)해서 풀었늗네
네 75 맞아용 x2가 0일때는 x1*x2로 못 나눠주니 대입해서 g(0)<0이라는 것만 밝혀주고 x2가 0이 아닐때는 x1*x2로 나눠서 생각해주는거에요 ㅎ
ㅇㅎ,, 제가 첨에 나눌때 조건파악을 좀잘못했네요 수알못 울고갑니다 광광,,
아니에요 잘하시는데요 ㅎㅎㅎ GOAT..
아녜요 진성 수알못입니다
ㅎㄷㄷ 그럴리가용
이과황님 이런식의 역기만은 옳지 않습니다
역기만이라뇨 ㅠ 전 그럴 능력이 없어용
거의 직감으로 g(x) 삼차함수로 놓고 푸니깐 쉽게 풀리긴 하는데
정석으로 풀려면 어떻게 도출해야 하나요?
g(x)가 4차함수인경우 2차함수인경우 3차함수인경우의 그래프 개형을 생각해서 풀도록 했어요 최고차항 계수도 그래서 줬구요
hx가 역함수 있다는 조건으로 개형추론 정도
f(x) = cx + b라 하자
f(x)의 역함수를 I(x)라 하자
I(x) = (1/c)x - (b/c) 이고
(가) 조건에 의하여
f(x) = cx + b = I(x) = (1/c)x - (b/c) 이므로
(1/c)x - (b/c) = cx + b 이고
c^2 = 1 이고 (b/c) = -b 이다
또한
(나) 와 (다) 조건에 의하여 g(x)는 이차 이상 사차 이하의 다항함수이다
또한
(라) 조건에 의하여 x2=0이라고 할때 g(x2) = g(0) < 0 이다
또한
함수 h(x)가 x=0에서 미분가능하므로
함수 h(x)는 x=0에서 연속이다
따라서
f(0) < 0이고
c=1일때 b=0이므로 f(0) < 0 이라는 조건이 성립할 수 없다
따라서 c= -1이고 b<0이다
따라서 h(x)가 실수 전체의 집합에서 미분가능하고 역함수가 존재하므로
h(x)는 실수 전체의 집합에서 감소해야 한다
따라서 g(x)가 최고차항이 음수인 이차 또는 사차 다항함수일 경우
x<0 인 어떤 실수 x에 대하여 g'(x)>0인 구간이 존재하므로
h(x)가 실수 전체의 집합에서 역함수를 가질 수 없다
따라서 g(x)는 삼차함수이고
g(x)= -x^3 + px^2 + qx + r이다
h(x)가 x=0에서 미분가능하므로
f'(0) = b = g'(0)이고
r=b이므로
g(x)= -x^3 + px^2 + qx + b이다
또한 g(-1) = 1+p-q+b=0이므로
g(x)= -x^3 + px^2 + qx + q - p - 1이고
g'(x) = -3x^2 + 2px + q이다
또한 g'(0) = f'(0) = -1이므로
g'(0)=q=-1이고
g(x)= -x^3 + px^2 - x - p - 2이다
또한
g(0)=-p-2<0이므로
p>-2이고 p는 음의 정수이므로 p=-1이다.
따라서 g(x) = -x^3 - x^2 - x - 1이고 f(x) = -x-1이다.
따라서
h(x)를 -1부터 1까지 적분한 값의 절댓값 = {(g(x)를 -1부터 0까지 적분한 값) + (f(x)를 0부터 1까지 적분한 값)}의 절댓값 = 25/12 = a
이므로
36a = 75
멋진 해설입니다!
자작문제 검색하다가 들어왔어요~
문제는 풀었는데 궁금한게 있어서요 (라) 조건은 g(0)의 부호를 알 수 있는것말고 다른 정보는 도출해낼 수 없나요? 예를들어 평균변화를 대소비교를통해 이계도함수의 부호를 알 수 있는것처럼요~혹시 문제 만드실때 (라)조건에서 다른 의도가 있나 해서 여쭤보아요!
(라)는 g(x)/x가 증가함수인걸 의도했습니다 ㅎ
그렇네요ㅎㅎ문제 너무 좋네요 앞으로 미적분 문제 시간되시면 또 만들어주세요~
ㅎㅎ.. 노력해보겠습니다..