수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://i.orbi.kr/0008354037
3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
1. 난 시발점이구나. 2. 고1 수학도 들어야하나.. 3. 공부 열심히 안 한 거...
-
제곧내입니다.
-
얼마즈음될까요?
-
교재 증거거래 2
교재 (n제) 보통 얼마에 거래되나여???
-
.0
-
심심함.........
-
아니메 추천좀 2
심심
-
기원 1일차
-
컴공 과탐2과목 2
2학년때 물화생지 1 다들었고 3학년때 공대는 물2화2 듣는게 입시에 좋은 영향을...
-
나 귀여워? 5
응?
-
으하하하
-
맥북vs 갤북 0
.
-
정권에 개노릇 작작하고 권력3위 자리내놓고 니 자식있는 미국으로 꺼져라 개씨발럼아
-
입시 상담소 14
요새 거의 매일 왔었는데 이제 진짜 기말 기간이라 한동안 또 못 올 것 같습니다ㅠ...
-
.
-
이거에요 여러분
-
한 과목은 가채점보다 실채점 백분위가 올라가있을 거임. 왜냐면 저도 작년에 그랬기...
-
퇴근이닷 26
따흑따흑 11월도 끝나는구나....
-
툭하면 뭔 교과서 찢고 대학 안가겠습니다! 공부 안하겠습니다! 선언하고 갑자기...
-
롤 밸런스게임 5
승률 60 모스트3 파이크 조이 흐웨이 vs 승률 40 모스트3 노틸러스 알리스타...
-
국어 학원다닌 적도 없고 인강을 들어본 적 없었는데 지금부터 들어야 할 것...
-
악몽이어서가아님 행복한꿈이어서슬픔 그게현실이아님을알기에...
-
진지하게
-
수능 어떻게 바뀌었는지 쳐봤는데 정말 요즘 너무 어려워 졌네요 ㅋㅋㅋㅋㅋㅋ
-
어머니 왜 고기를 구우시는 거죠
-
괜찮은건가? ㅈㄴ 불안하네
-
슬퍼요 친구가 그런 선택을하려고 했다는 게… 손이 막 떨려요저는 괜찮은 줄 알았는데...
-
대학입학못한신분으로는 아무도안써줄듯 점수가 개높은것도아니고
-
ㅅㅂ 8
택배 받고 곧바로 개봉 직후 촬영 ㄹㅇ 내부 저런 상태임 우체국택배 ㅆㅂ
-
'자다'에서 온 말. 뒤의 '장'은 청유형 어미 '-자'에 모종의 접미사 '-앙'이...
-
홋카이도에서 쓸 만한 카메라 찾는중
-
남칭구랑 볼 건디 1번 2번 머가 조을가요??...
-
히히
-
달달한거업ㄱ나
-
별다방갈거야 3
갈거야! 뭐먹을가
-
시대 단과 1
대치 시대 단과 언제부터 신청받음요?
-
24 현역 57 -> 25 재수 89 (기하 81, 메가, 잔헉사 기준) 으로...
-
수학 6월(77), 9월(88) 둘 다 미적 3틀 -> 수능(62) 미적...
-
오수 고민 1
현재 군인이고 전역 210일정도 남았습니다. 현역이 22수능, 재수 23수능으로...
-
개버러지 같은 년...
-
애슐리 홀이랑 백화점 카페인데요. 애슐리는 평일 런치타임 주2일, 카페는 주말마감...
-
사지러인데 성적이 애매따치해서 중앙대 좀 소신인디요 교차 유혹이 너무 크네요 성대...
-
적백이인데 존나 까다롭길래 이거 무조건 컷 84다 ㅆㅂㅋㅋ 이러면서 풀었는데 물론...
-
영어 공부 0
고2 3등급 나오는데요. 대성 메가있는데요. 누구 커리 따라가는게 좋을까요?...
-
이기상쌤 한명 때문에 메가패스 고민중인데 전성오 선생님 한국지리 잘 가르치시나요?...
-
안녕하세요. 피오르에듀입니다. 17시 30분경 금일 예약 확정이 되신 모든 분들께...
-
처음 선행하는거예요
-
밥ㅇㅡㄴ안먹음
-
백분위 99 97점이면 할만할까요?
-
커피 머신 색상 추천 좀요 (˃̣̣̣̣̣̣︿˂̣̣̣̣̣̣ ) 5
선물용이고 블랙 더 좋아할 것 같은데… 자주 주변 안 닦을 것 같고 뭐 튀기거나...
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..