12. 삼각함수 문제 하나 풀고 가세요
게시글 주소: https://i.orbi.kr/0008374225
sol.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학황만 0
현우진 뉴런 수2 정적분 넓이 파트 인데요 제가 그린 함수 같은 상황에서는 점대칭...
-
식스센스 지구과학
-
대학 태그하거나 적음?
-
잘생겨지고 싶다 6
잘생겨지면 할 일 거울 속에 비친 내 모습 계속 보기 내 얼굴만 봐도 재밌을텐데 ㄹㅇ
-
얼버기 0
얼버기 기상
-
https://youtu.be/MgyhJ-F-IpM?si=vvUMxjLEbTS66mFe
-
섣불리 강사데뷔 2
안해서 다행이라고 시간이 갈수록 생각이 더 진하게 드는듯 아마 학교 졸업도 하고...
-
공군컷말이되나 1
이사람들밥먹고자격증만준비했나
-
김범준쌤스타일이 0
어떤 스타일인가요? 약간 스킬적인 거 중요시하시나요
-
1. 파스칼의 정리원 위의 점 6개 있을 때 아래 G,H,I가 일직선 위에 있다....
-
ㅇㅈ특 1
내가할려고하면심장박동수280되서 못하겜ㅅㄹ음
-
수능때 운 하나도 없었으니까 원서질 운이라도 줬으면..
-
이해할수가없음 하 그년 대가리를 반으로 쪼갰어야 하는데
-
오늘 밥먹을때 씻을때 빼고 침대 밖에서 단 한 걸음도 안 나감...
-
1년 째 앵길 사람이 없어서 힘들었는데 1년 더 해야하네 친구들아 보고싶다ㅏㅏㅏㅏ
-
정말 착각일 수 있긴한데 수시로 톡와서 전화하자하고 나 과외끝날 시간 맞춰서...
-
내가 시중에 존재하는 기하 사교육의 결정체인데 가르쳐주고싶은 마음은 있는데 배울사람이없네
-
❅☃ 흑흑
-
올리면 학교 바로 특정이라서 못올리는게 슬프네요......
-
선착10명 5천덕 18
복권당첨기념
-
가짜 감동임 그냥 연말 가짜감동 쥐어짜기 레전드임 난 이제 더이상 속지 않아 캐롤 안들을거임
-
혼전순결은 조선시대에나 하는일인거 같애.도가 지나치지만 않으면 자유롭게 해도 괜찮다고 생각함!
-
연애는 무슨, 2
여사친도없어서그렇습니다
-
반전기하학에선 원이랑 직선을 같은거로 봐요. 직선 = 반지름이 무한인 원인거죠 !! ㅎㅎ
-
대학 질문 4
백분위기준 언매 88 미적 98 영어 2 화학 98 지구 96 대부분 고대...
-
쪽지 환영.
-
흠..
-
바램8일차 0
무언가를 간절히 바라면 그게 이루어진대요 지구 2컷 37 8일차
-
혼전순결 말이 나와서 10
혼전동거는 어떰?? 궁금
-
귀가 작아졌나? 그럴리가 없잖아 ㅅㅂ 뭐냐 2년동안 문제 없었는데
-
내가 정말 잘해줄 수 있는데
-
저랑 삶에 대한 심도 있는 토론을 하실 분 구합니다 32
주제 던져주세요
-
리셋을돌리고싶어라......
-
흐흐 0
히히
-
과제하러 가라고 해주세요
-
전교생은 978명(123학년다합쳐서)한학년당326명정두
-
삼각형 ABC의 내접원과 외접원의 바깥 닮음의 중심은 ABC의 Nagel...
-
잔다. 1
잘 자요 다들
-
내가 연락만 하면 바쁘대 ㅅㅂ
-
나도청춘고교미스터리비일상라이프를 경험하고싶어라
-
무물보 11
되게 야한 단어인듯
-
뭐 그래서 원숭이이다 엿나? 어쨌든 진짜네 새벽이니까 똥글 봐주세요....
-
무물보 2
맨날 눈팅만 했는데 심심해서 무물보
-
공대기준
-
pk+1꼴 소수 무한성, p^e*k+1꼴 소수 무한성, nk+1꼴 소수 무한성 0
cyclotomic polynomial 이론을 적절히 쓰면댐 ~
-
정원 4배됨? 또하면 8배 또하면 16배
-
나 진짜 뭐하는 애지 10
잘됐으면 좋겠는 사람한테 상처를 입혀버림 저 진짜 뭐하는 애일까요
-
1. 이차잉여일반적으로 다음과 같은 사실이 알려져있다.x^2==-1 (modp)인...
-
진학사 지원자 평균점수보다 내 점수가 얼마나 높아야 적정임?
-
현역이고 대구거주합니다 경북대 가능할까요? 가능하다면 어느학과까지 가능한가요? 탐구...
헿..ㅎ 고용주띠!
고용주 인성 ㅋ
인성 ㅇㅈ
?방금성적ㅍ..
ㅇㅅㅇ..
그거 16수능 가채점결과에여..ㅎ
??
깜놀해서 바로지움..ㅎ
암산으로 풀어서 맞췃어영! 3점 8~10번정도로 좋은거같아요!
잘하셨어요!
핵심은 일반해와 관련 없다는것이죠.
헣 저는 2파이를 10조각 쪼개서 규칙찾앗는데 그게 맞는건가옇
넵 ㅋㅋ 호도법과도 관련있죠 ㅋㅋ
제헌님 다른질문하나 드려도될까요 삼각함수 미분문제에서 미분후 극값찾을때 사인이나 코사인 하나로 몰아서 치환하는게 가장 이상적인가요? 그냥묶어내서 각각0되는거 찾으니까 실수가 잦네요..ㅠ 그런데 치환했을때 코사인일경우 극대극소가 반대로 됐었던가같아서 영 헷갈려요
대부분이 사인이나 코사인 하나로 몰아서 치환하게 되면 2차식이 생기고, 인수분해가 가능하게 되어서 근을 찾는 문제입니다.
이렇게 되면 변수가 하나(모두 cos이거나 모두 sin이거나)가 되어서 증감을 판별하기에 매우 편리합니다.
극대,극소,최대,최소를 구하는 가장 기본적인 방법은 증감표를 그리는 것 입니다.
변수가 통일되지 않으면 증감을 판단하기 조금 까다로울 수 있쬬....
치환했을 때 코사인일 경우 극대 극소가 반대로 된건.. 잘못 보신거같아요.
2차식일 때. 2차항의 계수에 따라서 극대, 극소가 달라지겠죠.
괜찮으시다면 제가 쓴 글 문제좀 봐주실수 있을까요?
??
게시글 하나 올린거용 제목이 삼각함수 미분질문이에요
어렵다....
^_+
ㄱㅁㅂ
하핳 암산으로 맞췄어요ㅎㅎ 뿌듯
^_^
깔끔한 3점 스타일이네요~ 잘 풀고 갑니당
누가 답좀.... 첨부파이루못열어보ㅓ요....