순열과조합 확통 공부방향
게시글 주소: https://i.orbi.kr/0008908469
12를진동하는 3월2 4월1 6월2 7월1 고3현역입니다
순열과조합 확통 공부법에 대해 질문드립니다
기출은 자이 한 5번은 본거같은데.. 왜 이렇게 확통을 못할까요 ㅜㅜ
인강을들을까요? 답을주세요..ㅠㅠ
신승범 확통이 좋다는데 ..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그개 잘 안 되네요.. 공부 시간 자체도 부족하고 한 문제에 계속 꽃혀 있는 경우가...
-
내가 누구? 3
한남
-
스마일 13
-
왜 굳이 탈퇴한 걸까? 몇 년 전 글들에 있는 옯창들 프로필 눌러 보면 한두 명이...
-
난 왜 안주냐고 ㅜㅜㅜㅜㅜㅜㅜㅜㅜ
-
칼럼? 입문 가이드? 한편 써볼까요
-
내년 사탐 표점 0
올해 전체적인 사탐 표점 상향 평준화 기조가 내년에도 이어질까요? 쌍지 표점...
-
사실 기억 안나는데 되게 망했던 걸로 기억
-
D-353 공부 4
-
그냥 또다른 능력자들의 싸움판이다 다시말해서 정시는 수능수능 열매 능력자들이 논술은...
-
나는 내신도태돼서 4점초반인데...
-
생명 강사 2
생명 강사 박선우 한종철 백호중에 누구 들을까요 ?
-
저 보기보다 4
말하는거보다 듣는거 좋아함 다들 잘못알고계신듯
-
의외로 내신 1점대인데 14
수능 성적 박살난 케이스 많나요? 현역 n수생 포함해서요
-
41걸음ㅋㅋ
-
임고 준비해야지 하고 생각할 때는 의욕이 1도 안 생기다가 대학원 준비해야지 하고...
-
나만 수학 어려웠냐... 국어는 쉬웠는데 수학이 미쳣 킬러 4점같은문제 2-3개정도...
-
응원해주세요ㅠ
-
밴드부 드갈까.. 15
고민되뇨..
-
목요일에 어디갈까 15
부산 vs 대전
-
어디에 걸면 되는건가요?
-
뀽뀽 0
뀨
-
엊그제 마마에서 데뷔무대 갖고 오늘 정식 데뷔했습니다. 엠넷 서바이벌 아이랜드2에서...
-
실채점 때 국어 탐구는 그대로 나올 거 같은데 수학은 여기서 표점 2점 정도 더...
-
수능끝나니까인생이좀낫네요
-
Vs쌩얼이지만 자연스러운 시골녀 누구랑 놀래
-
내년 오아시스 콘서트 10월 21일 화요일인데 이걸 가야할까요, 말아야할까요 내년에...
-
공부하려고 앉아있는데 1시간짜 폰 중이네 ㅋㅋ 문제가 심각한 듯 에효
-
만약에 이렇게 두개 붙었다고 치면 다들 어디가실건가요.. 전 중학교 고등학교 둘...
-
[속보] 일본 교도통신 “日대표 야스쿠니 참배는 오보…깊이 사과” 1
일본 교도통신이 최근 논란이 된 ‘사도광산 추도식’ 일본 측 정부 대표의 2022년...
-
5 5 4 이런 거 괜찮은가요..? 아니면 안전빵(6칸 이상) 하나를 넣고 6 4...
-
초 비 상 17
내 동생이 지금 내방에서 내 컴 뺏어서 롤하면서 남친이랑 통화함
-
수1수2는 시발점 들었고 미적분 더 비기너스 들을건데 상관 없죠 ?
-
호감테스트 0
그러함뇨
-
원래 있었는데 이제 없넹
-
"이게 아닌데...30번은 킬러인데....케이스가 두 개밖에 안나온다고?"
-
빠가사리임뇨
-
무물보 39
저도 이미지랑 질문 써드렸으니 이번엔 질문 받아요 공부/입시/취미/음식 등 전부...
-
제시문 면접에 내년 입학하면 휴학하자는 거에 찬성할거냐 반대할거냐 라고 물어보면 어쩌지..?
-
흠냐뇨이..
-
야동 4
서울대입구역 2번출구로 나오셔서 샤로수길 가시면 있어용
-
엘리뇨 1
그러함뇨
-
아 살짝 취했네 2
잠 온다
-
12월 6일이면 좋겠다 ㅅㅂ
-
41은 이게뭐노인데... 어떻게 변별한건가요..?
-
아니면 계산 생략해서 이정도에여??
-
ㄹㅇ 내가 개구리 이미지인가 청?ㅐㄱ구리,?? 난 질문 안 원했다고
-
제가 가체점이랑 omr이랑 한문제가 햇갈리는데 진학사 가체점판 입력하면 실체점때...
-
과제함뇨 1
날 말리지 마뇨
여러 선생님 들어본 경험으로는 신승범 확통은 호불호가 극명하게 갈림
아..진ㅉ요?? 불호들은 왜 싫대요..?ㅠㅠ
맛보기를 들어보세요~ 전 몇년 전에 들은거긴 한데 경우의 수를 구하는데 생각의 방향?이 좀 다른 선생님들과 달라서 저는 안들었었어요
저는 확통같은경우 전혀 접근하지 못하는 문제는 없다고봐요
주로 조건을 놓치거나 실수를 해서 틀리는데 그렇기 때문에 확통을 잘하는 방법은 그냥 많이 풀어보고 많이틀려보는 수밖에 없다고 생각해요
어떻게보면 투자대비 효율이 낮다고 할까요
순열과 조합이 어렵게 느껴지는 대부분의 경우는 합의 법칙과 곱의 법칙에 대한 이해 다시말해 경우의수 구하는 과정에서 언제 더할지 언제 곱할지에 대한 명확한 구분이 되지 않기 때문이라고 볼 수 있어요. 사실 현역시절 가장 힘들었던 부분이기도 하구요. 이에 대해 간단히 설명하면 합의 법칙의 경우일반적으로 우리가 수능에서 접하는 문제들은 더하는 것 끼리 '배타성'을 가져야한다는 원칙과 (2의배수 3의배수 문제같은 경우 논외) 곱의 법칙의 경우 문제에서 요구하는 하나의 사건이 만들어지지 않은 경우에는 서로 곱한다는 원칙을 잊지 마셨으면 해요. 다만 곱의 법칙 같은 경우에는 (특히 순열논리) 앞서 고려했던 부분에 대해서는 다음번에 고려해선 안된다는 점에 유의하시면 좋을듯해요. 혹시 이해가 안가시거나 궁금한점 있으시면 쪽지 보내주세요
김성은확통 갑