[카이독] GEAR 모의고사 피드백을 구합니다.
게시글 주소: https://i.orbi.kr/0009460556
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
패히로 야나미
-
물리 2컷이면 동홍~국숭아 무리인가요? 세단은 안정일까요ㅠㅠ
-
게임, 애니, 넷플 등 아무거나 컨텐츠 좀 부탁드립니다 하루종일 옯질하고 잠만 자니 지루하네요..
-
아주 발악을 했는데 이젠 4시간 5시간만 자도 눈이 떠져서 잠이 안오네 4시간...
-
여기를 3초만 바라보세요 그러면 고닉 "시즈카" 에 대한 기억은 사라집니다 1 ....
-
예전에 그 드릴드드 성대모사 보고 개쪼갰었는데
-
과잠ㅇㅈ 13
애니메이트 가야지
-
의과대학, 그리고 설포카 공과대학 그정도 말고 현재 대학의 교육으로서의 역할은...
-
얼리버드 기상 6
-
내신은 고대가 반영한다는거 계산해보면 1.4초중 까진 나옵니다 어디까지 될까요?
-
잇올에서 짐 싸고 마지막으로 메가 대성에 들어가보는데 그동안 앞다투어 올라가 있던...
-
아가 기상 2
안뇽안뇽
-
가채점 = 실채점
-
제 주변에는 일단 다 미적에서 꼬라박았던데 생각보다 정답률이 높아보여서..
-
진짜 수헁 급한데 미적분의 힘이라는 책읽고 내용 요약했는데 수학적 오류가 있을지...
-
근의 분리는 이미 박살 났지않았나 240913인가 240613인가 둘중하난데...
-
죽을까
-
나는모자란사람인듯 수학만좀올라가면소원이없겠다
-
웃기다 ㅋㅋㅋ얘들 진짜 혹하겠네
-
메가에서 공통1틀 96점 백분위 100 예상해주고 있는데 9평 100이 99였는데...
-
고1 수학의 중요성은 정말 높은듯 다들 그냥 각잡고 수 상 해도 2
손해 없다고 봄 나는 내 과외 커리에 수상을 따로 합니다 얘들 수원수투풀면서 본인이...
-
주로 어디에 분포되어 있는걸까요 ?? 문과 최상위권은 미적/기하 선택으로 많이 이미...
-
지금 심찬우쌤 프리패스를 구매 했는데 이거 사면 앞으로나오는 강의들도 다 신청 가능 한건가요?
-
이건 재밌는듯 웃길려고 안하는듯하면서 웃길ㄹ려고하는거같은 현우진의 화법 이 사람 개극욕심 엄청남
-
상하차 끝! 7
내일도 근무를...하 끝나고 먹은 식혜는 캬 하고 나올정도로 값짐
-
2015 개정교육과정 수능을 봐야 하는 예비 고2입니다. 개정 시발점을 사서...
-
모두 기를 넣어주세요!!!
-
허허 1
나자신 오늘도 작작 잠자자
-
훈련시작 전 7
오늘 춥다
-
선예매도 실패하고 돈도 없네
-
2년전인가? 그때 3만원이였는데 오늘 살까 하고 들어가보니까 7.7만원이네 ㄷㄷ 뭔...
-
그나마 돈없어도 그쪽이 탈조선 용이함 돈있으면 바로 미국가지 지금 돈있고 권력있는...
-
제발…
-
내신 5점대 중반이고 모고는 공부 안 하고 대충 봤을 때 4등급대 나오는데 1년...
-
요즘 아틸라 토탈워 사서 1212모드(중세시대) 하고 있는데 꿀잼임. 2주일째...
-
젖같다 ㅅㅂ 가정체험도 못쓴다는데 떨어지면 졸업식 오기 전에 자살
-
아 0
편의점 알바 연락 없는거 보니까 채용 안된듯
-
미국 가서 서울대 학벌 vs 영국 옥스토비, 캠브릿지 학벌 어떻게 생각함? ㅋㅋ 22
미국에서 작년부터 한국 도청사건 2023 뜨고, 올해부터 반도체 관련 법으로...
-
급식딱충들이 뭔 돈이 있어서
-
주소를 왜 정확하게 적으라는거임
-
크 갓곡
-
진짜 암것도 안하고 출석하기 + 중간,기말고사 딱시험전날만 공부하기로 3.5 받음...
-
ㅋㅋㅋㅋㅋㅋㅋ 4
ㅅ ㅂ ㄹ ㅁ 는 금지어인데 씨발롬아는 금지어 아닌게 ㅈㄴ 웃기네 ㅋㅋㅋㅋㅋ
-
목공강 만드시나요?
-
과탐 선택이 생지가 아니라면
-
시발점 볼륨 ㅈㄴ큰데….. 25분 1~19까지 15틀인데 시발점……..
-
23수능때 만점자가 3명이었는데…ㅠㅠ
-
근데 ㄹㅇ 25수능보다 제가 친 고1 3모가 더 어려운듯 0
"1컷 76점" 이거 3받고 ㄹㅇ 충격먹음
-
여캐일러 투척 11
1일차(?)
내일풀예정!
96점 받은 현역입니다. 좀 늦게 시작했기도 하고, 몸도 좀 안 좋아서 30번 풀다가 말았네요.
다시 보니까 못 풀 만한 문제는 아니었네요. 29번이 약간 약하기는 했는데, 그건 30번이 좀 어려워지면서 균형이 맞는 것 같습니다. 다만, q가 0이 되버리는 경우는 잘 없어서 조금 놀랐네요. 어쨌건 좋은 문제 감사합니다!
30번 해설 셋째줄에서 여섯째줄로 가는 논리가 f(x)+f(-x)=<0이기 때문에 f(x)=<0이라고 판정하신건가요? 제가 이해한 게 맞다면 이는 명백히 틀린 논리입니다. 반례로는 f(x)=-x등 얼마든지 잡을 수 있습니다.
출제자분의 의도가 그렇지 않다면 여섯째줄의 f(x)=<0은 왜 가정했는지 궁금합니다. 그것도 아니라면 k오르비큐에서 평점이 높은것 같아서 수업자료로 쓰는데 도저히 안풀려서 질문드립니다.
30번 해설을 작성할 때 정신없이 서술한 감이 없지 않아 있는 것 같습니다.
함수 g(x)가 기함수이고 감수함수이므로
g(f(x))+g(x+1)<=0 이 성립하려면
f(x)와 x+1의 부호가 반대일 때 f(x)와 x+1의 절댓값의 대소관계가 해설과 같아야 한다는 표현이었습니다.
x+1<=0이고 f(x)>=0인 경우도 있는데 이는 간과한게 맞는 것 같습니다.
빠른 시일 내에 해설에 반영하겠습니다.
이해 안되는 부분이 더 있으시다면 말해주세요.