6평 21번, 심층분석 및 다항함수의 전개
게시글 주소: https://i.orbi.kr/00012187583
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
에휴 시발
-
알바천국에 올라와있길래.. 네이버에 쳐도 안뜨긴하네요.
-
인스타가 디시(DC)화 되고 있다는 말을 안 믿었는데 3
진짜 존나 어질어질하노….
-
히히
-
운동이나가야지 외모9등급이라인생이불공평하구나.
-
알바 면접 파토내도되나요...? 오라구 하셨는데 좀 무섭고 하기 싫어졌어요 ㅠㅠ 어떡해요?
-
지금 현 23, 24학번들 자퇴 많이 할 것 같나요?? 뭐 반수나 편입 등등으로
-
내년에 할 선택과목 투표하고 가주시면 감사하겠습니다!
-
데코니나 신곡 4
앨범 트레일러에 나왔던 노래 짱이다 달달한 초코우유 두개 한번에 먹는 느낌..
-
설명회간드앙!! 1
드디어.. ㄷㄷ.. 갔다오면 공부자극 될 듯? 리프레시도 좀 해주고 근데 다녀오면...
-
잤는데 꿈 꿨음 4
내가 아쿠아리움에서 마이크들고 당년정 부르는 꿈임 안내 데스크 누님이 잘부른다고...
-
글 정리본 없나... 나 하나도 모르는데... 가이드같은거 봐도 뭔말인지...
-
수단이 아니라 목적이야 삼반수하는 이유도 메디컬을 가기위해 X 수능을 잘 보기위해 O
-
근데 겨우 1컷따리임… 수도권지역 아니고 지방쪽에 사는데, 받는사람 있을까…?
-
어짜피돈걱정은안할거같으니 내가하고싶은거하며 내가좋아하는사람과 평생사는게꿈임 근데그게좀많이힘듬
-
타인의 말에 휘둘리지 말고 갈 길을 가면 좋겠습니다. 메디컬이 가고 싶으면 메디컬에...
-
님들같으면 어디감????? 둘다좋다 난
-
굿즈 같은거 사는 분 많이 없어요???? 난 다 나처럼 저런거 방에 하나는 있겠지...
-
오직 등급만 따질때 확통이 1등급 따기 가장 쉽나요? 0
궁금해용 근데 수학 성적 산출은 확통 미적분 기하 다 한꺼번에 내니까 상관 없나용...
-
시버류ㅠㅠㅠㅠㅠㅠㅠ 6모 9모 백분위 98~99맞아도 수능때 80맞아버려서 못함...
-
전기기능사따는데 0
보통 얼마나 걸리나요?
-
러닝하니까 폐가 얼어붙는느낌
-
진짜 너무 옹졸해보임 오늘만 두번당햇서..
-
그냥 맨날 가슴이나 만지면서 살고 싶음.. (물론 본인건×) 메인글 보고 갑자기 든 생각
-
와.. ㄹㅇ어디까지 가는거냐 미누야.. 너무 연예인이 됐어..
-
이거 국어 수학 탐구 중 2과목 만점+ 영어 한국시 1등급이라는데 그럼 탐구의 경우...
-
님들은 누가 위대하다고 생각함?
-
침대에 누워있으면 유이랑 무기랑 눈 마주칠 수 잇음여 엄마랑 아빠가 이거 보고 한숨 쉬었어요… 흑흑
-
흠
-
커뮤하면 아무것도 생산적인일 안하는 병신인줄 아노 ㅋㅋ 4
어 니보다 열심히 사니까 아가리좀 여물어줘^^
-
어디 기사보니까 공대 과마다 휴학 비율이 엄청나던데 대부분이 메디컬 가려고 휴학한다고..
-
사탐 의대도 막아라 우우
-
다들 어떻게 생각하세요 탐구 난이도에 따라 달라진다했는데 올해 과탐이 어려우니깐 5%일까요?
-
김범준 대기 0
오늘 걸어놨는데 4월전에 빠지나요
-
입술에서 피가 몇번째 나는건지 모르겠어요오
-
6 9 수능 96 96 96 이네 ㅆㅃ이
-
심심해... 놀아줘
-
짝사랑+상사병 8
하 진짜 어이털리는 고민이긴 한데 쓸 데가 없어서 일단 여기에 써볼게요..처음...
-
지하철에서 방금 나왔는데 순간 숨이 안 쉬어졌다
-
리트 1타 아니셨나?
-
기사에선 가채점 만점자 현재까지 세화고 1명으로 확인되었다는데 막 두자릿수라는...
-
라인봐주실분.. 1
언미물1지1 백분위 96 94 86 99 영어 2등급입니다 서성한공대 ㄱㄴ할까요
-
좌극한이랑 우극한이랑 바뀐건가요?
-
근데 이번 영어 듣기 어려웠다고 그러는 분들이 많구나 5
근데 토익 LC는 진짜 몇배는 더 ㅈ같음ㅋㅋ
-
유 유 유 유 1
유유융유유유융유 라이키스마그네릭
-
보통 친구하고 통화하몀 24
한 두 시간 하죠?
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
이것만 따라오면 1등급 모든 수강생 1,2등급달성 관리철저 걍 1등급 효율적으로...
-
김성호 수1수2랑 손승연 미적 들으려고 하는데 자료양이나 난이도 강의력 따졌을때...
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ