[한권으로 완성하는 수학] 3월 모의 30번 적중
게시글 주소: https://i.orbi.kr/0002832139
ㅋㅋ
아실수도 있지만
일단 나왔으니 자랑은 할게여 ㅠㅠ
수학2의 심화특강28의 개념내용이 그대로 나왔네요..
책의 수능 부분인 Critical Pount 11 (밖의 점에서 그은 접선)으로 마무리하는 문제인데
중간에 심화특강28의 내용이 많이 가미되어있는 형태입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
난빌런 << 이새기는 걍 노력을 안함 ㅋㅋ
-
아일릿에 입덕해보는게 어떨까요?
-
성공 여부도 진짜 중요한데 그거 말고 실패 했을 때 손 털고 나가려면 최선을...
-
난 딱 두 번 그래 본 적 있음 딱히 그 사람한테 얘기하진 않았었는데... 흠
-
전에도 덕질 몇번 해봤긴 하지만 올 초에 어떤 가수에게 정신이 넘어가고 진짜...
-
인설의 목표 사반수 선택과목 추천좀요 국영 그럭저럭 하고 수학은 1컷에서 중반정도...
-
더코 왜필요함? 14
확인하는법 몰라서 가만히 있다가 오늘 알았음ㅋㅌㅋㅌ 7000정도라고 뜨는데 이거로 뭐함?
-
쎈+뉴런 조합이 은근 좋은거같음 뉴런 자체 문제가 조금 부족한것도 있고 난이도...
-
과탐2개봤으면 4
강대 시대같은 곳에 인문전형으로 지원 안될까요? 25수능 과탐 두과목 봤고 둘 다...
-
몇명있았을까
-
ㅇㅈ 2
완
-
인스타도 그냥 내가 맞팔하고싶은사람만 하면 안되나? 싶음 N수할때 나한테 연락해준...
-
이거 가시나요?
-
아 ㅇㅈ메타였네 4
이걸 탑승 못했네 아쉽
-
올해는운동도열심히좀하고
-
수학 2등급이상만 21
올해수능수학 공통에서만 15,20,21,22를 못풀었거든요..뭐가 문제일까요...
-
날지켜봐줘
-
진짜 자야지 2
진짜임! 아마도..
-
약대가서 꿀빤다 ㅇㅈ? 한의학 그거 다 사이비 아닌가.
-
휴게소가 도로 위에 걸쳐있음
-
제발요
-
ㅇㅈ)) 7
펑 따봉
-
올해는 한까없나 1
한의대 컷좀 마구 낮춰줘요
-
많이 읽은 건가요?
-
한문제만 더 맞추면 탐구평균 2띄워서 고대설대 최저 맞추는데 에라이 씨잎새과목 왜...
-
엑셀로 하는건 알겠는데 잘 아는 사람읶음?
-
https://orbi.kr/00065763225 이 글을 쓴 사람도 교원대에서...
-
원점수(메가기준 백분위) 화작 93(95) 확통 96(97) 영어 4 경제...
-
ㅇㅈ했으니 0
-
진지하게 기하런 어때요 10
재수한겁니다 공통은 아깝다는 생각이라도 드는데 미적은 아깝지도 않습니다 삼반수를 할...
-
진짜에요?싸서 그런가
-
이거 가능성 있다고 보시나요...전 아무리 봐도 이 정도 난이도는 아닌 거 같은데..
-
마크재밌당 2
크리에이트 모드랑 노르트스타 끼고 공장짓는중
-
수학 17번 틀린거 진짜 미쳐버릴거 같다 진짜 하.....
-
훌리님들 2
님들같으면 서울사는데 건국대 높공 vs 경희대 자연대 (서울캠) 중에 어디감
-
흑역사 진짜 많다ㅋㅋㅋㅋㅋ 어후 빨리 학교옮겨야지..
-
세계를 속여라 2
나는 매드사이언티스트 호오인 쿄마!
-
프사완 0
흐흐
-
히히
-
맞다고 생각함뇨이 아직 이대가 갖는 여대 1등자리 아우라가 20대 후반 누나들한텐...
-
육군 질문 6
해군 출신이라 잘 모르는데 점프 뛰다가 들키면 어떻게 되나요?
-
101점임
-
의외로 잘 쓰네요
-
ㅋㅋ 작년에 개꿀잼이었는데
-
훨씬 부담도 덜 가려나 화작에 기하 근데 기하 멘탈 중요함?
-
그나마 인생 덜 조져서 다행이네..
-
다음주 신검인데 3
4급은 어케해야 뜨는거임 ? 돼공도 요즘되나 ㅈㄴ가기싫음
-
다들 닉 유래 적기 31
ㄱㄱ 나는 그냥 미코토 프사에 어울릴만한걸로 정함
-
전역 얼마 안남은 말년병장입니다 수능 끝나니까 할게 없네요 현재 학적은 인하 아주...
-
아무거나 고 선넘ㄱㄴ
옹..
제가 하던 책 믿고싶어여 ㅠㅠ 이런 글보면 흔들림 !!
이 책 얻어갈 내용많나요? 가격이 쎄서 선뜻 구입하기 망설여짐..
아 .... 나 이거 이계도함수구해서 풀었다가 틀렸는데 ㅜㅜ
전 왜 이계도함수 구해서 맞았죠?
이상하네...?
아래로 볼록, 위로 볼록과 관련된 부등식이므로 수학적으로 이계도함수 해석도 당연히 가능할 수밖에 없습니다. ㅎㅎ
그래프가 위로 볼록하면 되므로 이계도함수를 구해서 이계도함수가 0보다 작으면 성립하는거 아닌가요 ?
그렇게 해서 답을 구했더니 24가 나오든데...
그풀이는 논리적 비약이 있는 풀이지요.
분명 위로볼록하면 위의 부등식을 만족하지만
위의 부등식을 만족한다고 다 위로볼록일까요?
그렇게 되려면 "임의의 t에 대해서"라는 말이 추가되면 됩니다.
sign님께서는 식을 잘분석했지만
필요충분관계를 잘못이해하고 계셔서 그러한 실수를 하셨습니다.
난만한님 그런데요 저 Sign분께서 의도한 답이되려면 '임의의 t에 대하서'가 추가되면 된다하셨는데
왜 그런거죠 이해가 잘 안되네요..
그게 추가되도 모든 실수x에 대하여 라는 말이 있어서 좀 이상한거같은데..
저기 위의 한완수 수학2 서술과정을 보면
"위로볼록이면 아래의부등식을 만족한다"
라고 되어있고, "접선으로 해석"하는 발상을 설명하고 있습니다.
또한 이번 교육청문제에
"접선으로 해석"하는 발상이 출제된것이구요.
이제 이해가 됬네요 ㅎㅎ 감사합니다 !
참고로 저도 한완수 수2 샀어요 ㅋ
ㅎㅎ 공부열심히해서
꼭 대학교합격해서 멋진후기남겨주세요~!
혹시 연세대오면 제가 밥사드릴께요~~(후배니깐!)
미분계수와 평균변화율 비교하는 일반적인 문제...(퍽
이계도함수만구하고 그냥했다가 틀렸네요 ㅋㅋㅋ
이계도함수구한다음에 0,0이랑 2,0따졌어야했는뎀..ㅠㅠ
앞에서 멘붕하다가 접선의 방정식이란걸 모르고 뻘짓함 ㅠ 저거 그냥 y절편이 0인 접선 2개가 접할때 x좌표 구하는 거였는데 ㅠ 시험끝나고 생각나다니 ㅜ
저도 님처럼 생각하고 풀려했는데 답지는 약간 다르게 설명한것 같더라구요.. 애초에 (0,0)과 (2,0)에서 그은 접선을 생각했는데 답지가 잘 이해가 안되네요 ㅠㅠ 님이 생각했던 방향으로 풀려고하면 접점의x좌표를 직접 구하기도 힘든것같구요...... 어느부분이 잘못된걸까요?? 누가 속시원하게 설명좀해주세요!! ㅠㅠ
미분계수 = 평균변화율 이렇게 식 놓고 하면 쉽게 접점의 x좌표가 2/3 인거 알수 있습니다 x=1 에 대칭 이므로 x = 4/3 도 또다른 접점입니다. 이를 통해 답을 구할 수 있습니다.
결국 이계도 함수구해서 위로볼록일 때 하면 틀리는 내용 아닌가요?