함수의 연속 질문드립니다!!
게시글 주소: https://i.orbi.kr/0003015970
열린구간에서 함수의 연속일 경우 그 끝점(경계점이라고 하기에도 모호한)
에서의 연속성을 어떻게 확인해주어야하나요??
(그냥 구간내에서 이어져있으면 연속입니다 라는답변을 바라고
질문드리는것이아니고 왜 연속인가에대해 질문드립니다ㅠ)
닫힌구간에서는 경계점에서의 연속성을 특별하게 약속하여 연속성확인을 하는데
열린구간에서는 그냥 아무런 확인방법이 없는것같습니다
+
수능을 치루게 될 수험생으로써
오직 고등학교 교과과정 교과서를 바탕으로 사고하는학생은
어떻게 이러한내용을 받아들여야하는지에대해도 설명해주시면
정말 감사하겠습니다^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
홍대 ㄱㄴ? 0
-
재수 스트레스 한방에 날리긴 했는데 몸이 힘드네 지금
-
몇 등급인 건가요..? 친구가 가채점 평백 92받아서 한양대 넣는다는데,, 몇 인가용?
-
동덕 사이버 대학교다 이거야~
-
와 이빨 아파서 3
뒤질 거 같다 1달마다 찾아오는 고문
-
걍 겨울이 존나 잔인하네 어케살아야하지
-
외쳐 ㅈ드갓
-
ㅈㄱㄴ
-
기회균등 전형, 저소득전형(차상위계층)으로 어느정도까지 갈 수 있을까요?? 잘...
-
안락사 시급하다 0
첫 해외여행 스위스로..
-
기분조타뇨
-
화작기준 대성마이맥 정답률top15임 Ebsi는 작년9월꺼 날아가서 대성으로 대체함...
-
쌩삼수 라인 2
현역 65445 재수 44343 삼수 32312 .. 시립대 경희대 건국대 가능할까요..? ㅠ하
-
수학은 92는 오바여도 88 선이겠다 느낌은 들긴 들었는데 국어는 현장 체감...
-
쌩삼수 후기 0
-
올해는 헬스+어학+의학+경제학+기타 등등의 공부와 함께했는데 내년은? 또 뭘 해야...
-
그 분은 나름대로 여러가지 근거를 대서 1컷이 높을 수도 있다 이랬는데 메인글...
-
휴식이다 1
후..
-
1컷 92 이하면 학력 저하다>이건 틀린말 맞음 근데 학력 저하가 아니라 역으로...
-
설대 산공을 텔그랑 메가스터디 같은데 넣어보면 텔그는 99프로 메가스터디는 80프로...
-
자작문항)잠 못 드는 오르비언들 이거 한번 풀어보세요…! 11
지문 짧고 문제 하나입니다…! 선지 만들다가 내가 정신병 발생할뻔 한건 안비밀…
-
숏을 싸게 주워서 벌고 롱을 산다 이거임뇨
-
이런식으로 풀어도되냐
-
서울대 재학중이고 24수능 언미영생지 96 98 2 99 92 였는데 장학금은 어느정도 나올까요?
-
팩폭 시원하구만 1
굿
-
바램1일차 1
무언가를 간절히 바라면 그게 이루어진대요 지구 37 2컷 1일차
-
redline <<<<< 개 재밌어보임뇨
-
짧은 정보글 하나 씀 본인이 영어를 어느정도 한다는 가정 하에 보통 대학가면 웬만한...
-
네이버카페에 컨설팅이효고ㅓ가있는게맞냐? 이런식으로 쓴 글에 누가...
-
말이 되는 소리를 하셈뇨
-
23수능 화작미적 응시했습니다. 게딱지 하나 틀렸습니다. 1컷 96 24수능...
-
누가 이 방정식 내도됨? 얘기하던데 3차방정식 여러번 나온 시점에서 딱히 못낼이유는...
-
만약 92 나오면 얼공하고 알몸도게자함뇨
-
스펙 평가좀 4
200 3 130 연세대 약대 재학중 연애 60번 오타니닮음
-
얼버기 4
-
ㄹㅇ 22번인가 30번빼고 어려운거 없지않았음? 진짜 소신발언하자면 말이죠..
-
연치가 목표였는데 ㅠㅠ 경북대치대는 될까요..?
-
오야스미 0
네루!
-
본능적으로 어떻게든 부정하고 싶어지는 그런 ㅈ같은 예감들이 본능을 뚫고 올라온다는건..
-
별거 아닌거 같았는데 내 상황부터 별로 안 좋아서 그런가 쉽지않음..
-
미적 만점 3천명은 너무 가신거 아님?
-
자기를 욕한다는둥 자기는 욕안먹는둥 하는건가요 누군지도 모르겠는 일개 수험생인지...
-
과탐에서 0
과탐 같은 과목에서 원점수차가 1,2점밖에 안나면 표점이 같을 수 있나요?
-
T1이 고의적으로 선수 지우기 하는거 진짜 비하인드에서 뭔 짓을 했다는건데.......
-
텔그랑 낙지 2
성적표 나오고 실채점으로 돌릴 때 사도 안 늦죠?
-
미적 1컷 88보다 이하여야함 이건 반박은 평가원 원점수 100 5번이상부터 받음
-
왜 쟤만 99냐 도대체 뭔근거로 핵펑크일거라고예상하는거지 재밌네
-
안심해도 되는거임?? 물론 가채점판이지만 그렇지만...ㅠㅠㅠ
-
1컷 47일지 45일지로 의견갈리다가 성적표 까보니까 만점자 5퍼뜬게 생각났음
-
다들 경험상 첫날 기억이 정확하신가요??? 진짜 잠을 못이루겠는데.. 대학이...
일반적으로 구간연속이라는것은 폐구간ab에서 그래프가 연속이면 그래프 f는 구간 ab에서 연속이다라고 말하는거고 개구간에서 양끝점은 연속성을논의 할수 없습시다 만약 그 주변값에서의 연속이라고 물어보신다면 전제에서 개구간 ab에서 연속인 함수라고 그랬으므로 연속임은 자명하고요
만약 교과과정을 이용해서 증명한다면 limf(a+h)h는 +○ 의 값은 fa로존재하지만 fa는 정의되지않는값이므로 정의 할수없습니다
답변해주셔서 정말감사합니다^^
'전제가 연속이기때문에 연속이다'라는 말이신가요??(음,,,제가 뭔가 질문을 잘못한것같네요ㅠ)
제가 말하고자 했던바는
전제가 주어져있지않을경우 우리가 알고있는 개구간에서 연속인 그래프가 왜 연속인가에대해
물어본것이었습니다(당연히 이렇게 받아들이시줄알았는데 ㅠㅠ
이말도 오해의 소지가 있을것같아서 첨언하자면
왜 우리가 그러한 개구간의 그래프를 연속이라고 생각해주느냐에 대한 물음이었던것이죠)
만약 이러하다면 어떠한지 다시 묻고싶습니다
그리고 죄송하지만 교과과정을 이용해서 증명하신부분을 좀더 명확하게 설명해주실수있으신가요??
아니요, 열린구간에서의 연속성을 체크할 경우 끝 점은 전혀 고려대상이 아닙니다. 예를 들어 함수
f(x) = 1/x(1-x)
는 열린구간 (0, 1)에서 연속입니다. 아, 참고로 함수 f(x)가 구간 I 위에서 연속이라는 것은, I 위의 임의의 점에서 f(x)가 연속인 것으로 정의됩니다.
sos440님 정말 감사드립니다^^(저번에도 친절히 답변해주시고ㅠ)
'함수 f(x)가 구간 I 위에서 연속이라는 것은, I 위의 임의의 점에서 f(x)가 연속인 것으로 정의됩니다'
라고하셨는데
임의의점에 끝점이 포함되지는 않나요?
끝점은 왜 전혀 고려대상이 아닌걸까요??ㅠㅠ
함수 f를 어떤 구간 위에서 살펴보겠다는 이야기는, 사실 함수 f의 정의역을 그 구간으로 제한한 다음 그렇게 얻어진 새로운 함수를 살펴보겠다는 것과 같은 의미입니다.
그러므로 이번 경우에도 함수 f를 처음부터 열린구간 (a, b) 위에서 정의되었다고 생각합시다.
그러면 함수 f가 노는 세상은 오직 (a, b) 위이며, 그 바깥은 전혀 관심사가 아닙니다. 심지어 함수 f는 그 바깥이 있는지도 모르는 상태이지요.
그러면 오히려 (a, b)의 끝점에서 연속성을 체크한다는 아이디어 자체가 굉장히 낮설어집니다. f가 값을 가지지도 않는 미지의 영역에서 함수의 연속성을 논하는 게 의미가 있을까요?
구간 위에서 살펴보겠다는 의미는 이러한 뜻을 담고 있습니다.
그리고 사실 극단적인 예로, 실수 전체도 사실은 (-∞, ∞)인 열린구간입니다. (고등학교에서 이러한 관점을 직접 소개하는지는 기억이 잘 나진 않습니다만…)
따라서 만약 열린구간에서 정의된 함수의 연속성을 따지기 위해 그 열린구간을 벗어나야만 한다면, 우리는 실수 전체에서 정의된 연속함수의 연속성을 따지기 위해 lim_{x→∞} f(x) 와 lim_{x→-∞} f(x) 의 존재성도 체크해야만 하는 사태가 벌어집니다.
그리고 그렇게 되면 우리가 알던 수많은 연속함수들 - 일차 이상의 다항함수, 지수로그함수 등등 - 이 모두 연속이 아니게 되어버립니다!
이로부터 끝점을 고려하는 것이 얼마나 어색한 일인지 알 수 있지요.
아... 정말 죄송합니다
뭔가 오해가 있었던것 같네요
제가말한 끝점이라하믄 예를들어(a,b)에서
(a,b)구간내에서 a+0,b-0(이렇게 표현하기 이상하네요;;)
과 같은 점입니다.
어떤 개념을 이야기하시는지 잘은 모르겠네요.
lim_{x→a+0} f(x) 나 lim_{x→b-0} f(x) 이라는 극한이 수렴하는가도 체크해야 하는가 하는 질문인가요? 그렇다면 이 질문에 대한 대답은 제 첫번째 답변의 예제에서 찾으실 수 있을 것 같네요.
그리고, 일단 실수 속에는 0 자신을 제외한 어떠한 무한소도 존재하지 않기 때문에, a+0 = a 이고 b-0 = b 입니다.
우리가 편의상 a+0 같은 표현을 쓰긴 하지만, 이는 어디까지나 극한 내에서 극한의 행동 자체를 나타내는 형식적인 표현일 뿐, 수 자신이 아닙니다.
(무한소를 수로써 다루려면 실수를 벗어나 훨씬 더 거대한 수 체계인 hyperreal number나 surreal number로 넘어가야 합니다. 그리고 이는 명백히 고등학교 과정은 아니지요.)
따라서 (a, b)에 속한 임의의 점들은 항상 a, b와 양수 거리만큼 떨어져 있습니다. 아마 0을 무한소로 생각하신 것이라면, 제 대답은 '그런 점은 (a, b) 내에 존재하지 않는다' 라고 말씀드리는 게 옳겠네요.
만약 위에서 언급한 게 아니라 또 다른 의미시라면, 좀 더 자세하게 알려주시면 좋겠습니다. 'ㅁ'